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Fitness landscape: definition

• Adaptation by natural selection!
!
!
!
!
!
!
!
!

• To predict the course of adaptation, we need to know the 
map between genotypes and fitness: the fitness landscape 
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Representation of a fitness landscape

• Wright 1932



Low-dimension representation of a fitness landscape

• Wright 1932



Ruggedness requires epistasis

• epistasis = interaction for fitness between two mutations!
! e = log[W11] + log[W00] - log[W01] - log[W10]
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Fitness landscape models with tuneable 
ruggedness

• Kauffman’s NK model 1987!
• N loci!
• each locus acts in conjunction with K-1 loci!
• fitness is the sum of contributions from each locus!
• K = 1 is full additivity, K = N is a random landscape !
!

• “Rough Mount Fuji” model Aita Husimi 1996!
• fitness is the sum of contributions from each locus 

plus random noise with variance v!
• v=0 is full additivity, large v is a random landscape



A phenotypic fitness landscape model

• Fisher’s geometric model of adaptation (1930)

maximum fitness

phenotype 1

ph
en

ot
yp

e 
2



Experimental fitness landscapes

• 5 mutations in β-lactamase gene conferring resistance to cefotaxime!
• Minimum Inhibitory Concentration of 25 = 32 genotypes is measured!
!
!
!
!
!
!
!
!
!
!

• Adaptation can proceed through 18 trajectories out of the 120 possible
Weinreich et al 2006
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Experimental fitness landscapes

Name Species Environment Mutation and genotype number References

A1, A2 Aspergillus niger Minimal medium 2 datasets of 5 mutations, 2
genotypes

de Visser et al. 1997!
de Visser et al. 2009

B1-B10 Saccharomyces 
cerevisiae

Standard medium (on 
plates)

1711+3885 mutations, 5.4 million 
genotypes Costanzo et al. 2010

C1, C2 Drosophila 
melanogaster Lab environment 5 mutations, 2 Whitlock & Bourguet 

2000

D ssDNA bacteriophage 
ID11 E. coli (host) 9 mutations, 9 single mutants, 18 

double mutants Rokyta et al. 2011

E1, E2 Vesicular stomatitis 
virus

Baby hamster kidney 
(BHK21) cells (host)

6 mutations, 6 single mutants, 15 
double mutants (E1)!
28 mutations, 76 double mutants (E2)

Sanjuán et al. 2004

F Escherichia coli New, Low-glucose 
environment 5 mutations, 2 Khan et al. 2011

G Methylobacterium 
extorquens Methanol environment 4 mutations, 2 Chou et al. 2011

H1, H2 Escherichia coli Cefotaxime (β lactam 
antibiotic) 5 mutations, 2 Weinreich et al. 2006!

Tan et al. 2011

H3, H4 Escherichia coli Cefotaxime (β lactam 
antibiotic) 4 mutations, 2 Schenk et al. 2013

I1, I2, I3
Plasmodium falciparum 
(or vivax) DHFR gene 
transformed into E. coli 
and S. cerevisiae

Pyrimethamine 
(antimalarial drug) 4 mutations, 2

Lozovsky et al. 2009!
Brown et al. 2010!
Jiang et al. 2013



• Can we infer the underlying fitness landscapes?!
!

• Can we compare the underlying fitness landscape 
across species and environments?!
!

• Is Fisher’s geometric model explaining well the 
structure of these genotypic landscapes? 

10



Methods
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Challenge 1: Diversity of protocols

Random mutations Independently selected mutations Co-selected mutations

de Visser et al 1997 Sanjuan et al 2004 Khan et al 2011
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Challenge 2: Diversity due to small number of mutations sampled

Weinreich et al. 2006, Schenk et al. 2013

five mutations which together 
confer large resistance four large effect mutations four small effect mutations

number of mutations
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Resolution of the two challenges

!
• Solution to challenge 1: simulate the details of the 

protocol used to isolate each mutation!
!

• Solution to challenge 2: simulate the fact that each 
genotypic landscapes represents a small sample of 
mutations among the myriad available mutations!
!
!
! => Approximate Bayesian Computation!
! => Fisher’s Geometric model of adaptation



Several arguments in favour of Fisher’s 
geometric model

• Any fitness optimum can be approximated as a Gaussian 
so even if the landscape is multi-peaked, the population 
only “sees” a single peak!
!

• Makes sense biologically to consider phenotypes instead 
of genotypes!
!

• Emerges from mechanistic first principles (Martin 2014)!
!

• Predicts a number of experimental quantities (Martin et al. 
2007, Perfeito et al. 2014, Schoustra et al. 2016)!
!

• Generates a diversity of landscapes with properties 
similar to experimental landscapes (Blanquart et al 2014)

organisms. These approaches propose a clear and valuable mechanistic
basis for gene interaction, and flux balance analysis has even been
successfully tested13, although only for the extreme case of single-gene
knockouts. However, flux balance analysis requires extensive knowl-
edge of the metabolism of particular organisms in particular environ-
ments, so it cannot be applied to a wide range of biological systems.
Perhaps more importantly, the predicted patterns of epistasis remain
to be directly tested with empirical data.

Despite the relatively minor function that Fisher attributed to
epistasis in adaptation, his geometrical model of adaptation14 provides
a general, yet unexplored, framework to predict epistasis among
mutations. This model assumes stabilizing selection on ‘n’ phenotypic
traits. The effect of a mutation is modeled as a random displacement
in this ‘n-dimensional’ phenotypic space. Although it has been very
useful in rejuvenating the theory of adaptation15, Fisher’s model is
often merely viewed as a heuristic picture for mutational effects.
However, by avoiding a mechanistic description of the relationship
between particular mutations, phenotypes and fitness, it allows a
global description of mutational effects without exhaustive knowledge

of the underlying genetic details. This generality is what makes it
attractive16. In addition, many of the underlying assumptions in
Fisher’s original model are in fact quite realistic17 or can easily
be relaxed6,18.

Here we used an extended version of Fisher’s geometric model6 that
allows for arbitrary mutational and selective interactions between
traits determining fitness (Fig. 1). Any model of stabilizing
selection (selection for a given optimum) naturally generates epistasis
for fitness, even when mutations act additively on the underlying
phenotype, because the relationship between phenotype and fitness is
nonlinear, as in our model here (Fig. 1). The model is formulated in
terms of measurable quantities (focusing on mutant fitness W instead
of underlying phenotype z (Fig. 1), which makes it directly
comparable to observation. We chose a Gaussian fitness function
(relating phenotype to fitness) because it approximates any smooth
function in the vicinity of an optimum and it qualitatively predicts
observed patterns in empirical data, such as the gamma distri-
bution of mutational effects in benign environments6 and the effect
of environmental harshness on the mutational mean and variance
in fitness19. Finally, the model can be easily generalized to
describe epistasis among more than two mutations (Supplementary
Methods online).

From this model, we derived three testable predictions (for details
and interpretation, see Methods). Log(wi) denotes the log-fitness of a
mutant bearing mutation i relative to that of the nonmutated initial
genotype (equation (1)). Epistasis among the pair of mutations i and j
(eij) is defined (equation (2)) as the difference between the log-fitness
of the double mutant and that expected if mutations acted multi-
plicatively: eij ¼ log(wij) – log(wi wj). The model first predicts that the
probability density function of eij is well approximated by a Gaussian
with mean zero and variance 2vs*, where vs* ¼ Var(log(wi)) is the
variance of single mutation effects measured in an environment to
which the initial genotype is well adapted (equation (3)). The second
prediction of the model is that epistasis among pairs of beneficial
mutations should be both biased and skewed toward negative values.
Third, the model predicts that when the initial genotype is at or near
the optimum, the distribution of log-fitness among mutant lines
with k mutations (all deleterious) can be approximated by a gamma
distribution G(b, a) with a constant shape (b) and a scale (a)
proportional to k.
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Figure 2 Observed and predicted distributions of fitness epistasis between
random pairs of mutations. (a,b) The observed distribution of epistasis for
log-fitness is presented for two model species (a, E. coli data set 1 (ref. 7)
and b, VSV data set8), along with the predicted Gaussian distribution
N(0, 2vs*), where vs* is the variance of single fitness effects (at the
optimum, so ¼ 0) estimated directly (E. coli) or inferred (VSV, using
the correction for so a 0; Methods). The dashed line gives the kernel
density estimate of the data (a smoothed equivalent of a histogram)
with a Gaussian smoothing kernel. The model and data are in very good
agreement for both species.

Table 1 Pairwise epistasis in VSV and E. coli: fit to predictions

Species (number of observations)

Input parameters

(number of observations)

Epistasis variance

ve obs (s.e.m.) ve pred (s.e.m.)

ve obs / ve pred

F test

Epistasis mean

me obs (s.e.m.) t test K-S test

E. coli (n ¼ 27) (all mutations)

(ref. 7)

vs* ¼ 0.033

(n ¼ 54)

ve obs ¼ 0.0652 (0.017)

ve pred ¼ 0.0670 (0.013)

F26,53¼ 97%

P ¼ 0.94

me obs ¼ –0.033 (0.05)

me pred ¼ 0

t26 ¼ –0.66, P ¼ 0.51

D ¼ 0.18

P ¼ 0.30

VSV (n ¼ 59) (all mutations)

(ref. 8)

vs* ¼ 0.0047

so ¼ 0.11a (n ¼ 118)

ve obs ¼ 0.0089 (0.0016)

ve pred ¼ 0.0094 (0.0012)

F58,117 ¼ 95%

P ¼ 0.86

me obs ¼ 0.004 (0.012)

me pred ¼ 0

t58 ¼ 0.31, P ¼ 0.75

D ¼ 0.085

P ¼ 0.76

VSV (n ¼ 15) (beneficial

mutations) (ref. 8)

ne ¼ 3a

le ¼ 0.06a so ¼ 0.11a

(n ¼ 118)

ve obs ¼ 0.0043 (0.0016)

ve pred ¼ 0.0045

obs/pred ¼ 96%

w214 ¼ 13.4 P ¼0.99

me obs ¼ –0.075 (0.023)

me pred ¼ –0.059

t9 ¼ –0.95, P ¼ 0.36

D ¼ 0.27

P ¼ 0.22

In this test of the fit to predictions, observed variance (ve obs) and predicted variance (ve pred) were compared with two-tailed F tests, as the prediction (ve pred ¼ 2vs*) is itself based
on an independent estimate of vs*. For beneficial mutations in VSV (row three), the simulated prediction (see Methods) was considered exact (a conservative approach), so a two-
tailed w2 test was used. Observed means (me obs) and predicted means (me pred) were compared with two-tailed t tests. Distributions were not significantly different from a Gaussian
(Shapiro-Wilks test: P ¼ 0.45, E. coli; P ¼ 0.44, VSV (all mutations); P ¼ 0.59, VSV (beneficial mutations)). The predicted and observed overall distributions were also compared
with Kolmogorov-Smirnov (K-S) tests (one-sample test with N(0, 2vs*) or two-sample test with the simulated prediction for beneficial mutations in VSV). Column two gives the value
of the input parameters used in the prediction, estimated independently from the log-fitness distributions of the single mutants from which the double mutants were derived. None of
the observed distributions differ significantly from the predictions. The ratios of variances (in boldface) show that the prediction is always within 5% of the estimation. Power curves
for the t tests and F tests are given in Supplementary Figure 1.
aEstimates from the fit of the VSV data set (displaced gamma), with n ¼ ne ¼ 3 in simulations (Fig. 3) closest integer to the estimated ne ¼ 2.5.
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epistasis

GENOTYPIC LANDSCAPES UNDER FISHER’S MODEL

Figure 6. The distribution of the roughness to slope ratio and the fraction of sign epistasis over 1,000 genotypic fitness landscapes
generated with five mutations. Top left panel: distribution of roughness to slope ratio when W00 = 0.1, for three levels of complexity, for
independently selected mutations (distributions for coselected mutations are very similar). In these conditions, there is no sign epistasis
in more than 95% of the landscapes. Top right panel: distribution of the statistics in independently selected (blue) versus coselected
mutations (purple). Bottom panel: distribution of the statistics for different levels of complexity (n = 3, n = 10, and n = 100 in blue,
red, green) in independently selected mutations (left) and coselected mutations (right). Statistics corresponding to three experimental
landscapes are superimposed (C: Chou et al. 2011, K: Khan et al. 2011, W: Weinreich et al. 2006).

CRITICAL ASSUMPTIONS

Our analytical results rely on several assumptions. First, we as-
sumed that the landscape is isotropic, that is, the eigenvalues
of SM (the product of the selection and the mutation matrices)
are all identical. Recent work suggests that the isotropic landscape
emerges under a relatively general set of “first principles” (Martin
2014). Our analytical results may be extended to anisotropic
landscape when the ancestral strain is maladapted only on one phe-
notype (Appendix, Supporting Information Fig. S1), but it remains
to be explored how the outcomes are modified when the land-
scape is anisotropic and when the ancestral strain is maladapted
on several phenotypes. Simulations suggest that anisotropy may
alter the average value of epistasis (Supporting Information
Fig. S1). Second, we assume universal pleiotropy, whereby each
mutation affects all phenotypes of the organism. We predict that

restricted pleiotropy will reduce the fraction of sign epistasis and
the roughness of small genotypic landscapes. Indeed, if restricted
pleiotropy only makes the norm of mutations smaller (Lourenço
et al. 2011), then the optimum will appear further away in the phe-
notypic space and sign epistasis will be less common. If restricted
pleiotropy also reduces the complexity of the subspace affected by
mutations (Chevin et al. 2010), antagonistic pleiotropy will be less
common and this will also make sign epistasis less common. Also,
note that we scale the mutational effect such that complexity does
not affect the expected norm of mutations in the phenotypic space.
With a different scaling such that the norm of mutations is larger
in a more complex space, an even greater impact of complexity
on sign epistasis and roughness is expected. Third, we assume
that the pool of available beneficial mutations is infinite: each
mutation that can occur and fix in the population is unique. If the
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• Mutation effects on phenotypes follows 
multivariate normal distribution with mean 0!

• Additive effects of mutations in the 
phenotypic space!

• Four parameters!
! Wmax: maximum fitness!
! σmut: sd of mutational effect!
! n: dimensionality of phenotypic space!
! Q: shape of the peak

phenotype 1
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Overview of Approximate Bayesian Computation

Draw 106 
parameter sets in 
prior distribution

Simulate 106 pseudo 
datasets under 
Fisher’s model 

Compute distance 
between each simulation 
and focal dataset

The posterior is the 0.5% 
parameter sets with smallest 
distance to focal dataset (rejection).!
Possible to correct with regression 
or neural network



Details of the evolutionary simulations

!
!
!
!
!
!
!
!

• Strong selection, weak mutation approximation!
• Several types of landscapes: all combinations of 5 

mutations, all pair of mutations among 8 mutations, etc.

Random mutations

Independently selected mutations

Co-selected mutations



Details of the distance measure

• Compute summary statistics for the focal dataset and for the 
106 simulated pseudo-datasets!

• Distance between summary statistics of the simulated 
pseudo-data and the focal dataset, normalised!
!
!
!
!

• We tested two sets of summary statistics:!
• (1) all fitness values!
• (2) mean and variance of selection coefficient, mean and 

variance of epistasis, maximal fitness achieved, and 
correlation between selection and epistasis

varied. Mutations were random, independently selected, or
coselected. “Independently selected” means that the muta-
tions emerged under the action of selection in separate pop-
ulations evolving independently from a unique ancestral
genotype. “Co-selected” means that the mutations were se-
lected sequentially in the same population. Modeling the way
selection biased the resulting empirical landscape is already
complicated. To make matters worse, several protocols in-
cluded an additional step. These protocols were used to study
the landscape of resistance to cefotaxime, a b-lactam antibi-
otic (landscapes H1–H4). Among a large set of 48 mutations
found individually in cefotaxime-resistant natural isolates,
three smaller subsets were studied in detail. These subsets
were composed of the four mutations of smallest fitness ef-
fect, the four mutations of largest fitness effect (H3 and H4),
and five mutations that together conferred a very high fitness
(H1–H2). To account for this variety of protocols, we used a
flexible approximate Bayesian computation (hereafter ABC)
approach to infer from empirical data the parameters under-
lying Fisher’s geometric model.

Details of the ABC framework: The original ABC rejection
algorithm proceeds as follows: a large number of parameter
sets aredrawn inaprior distribution. For eachparameter set u,
a data set bDðuÞ is simulated, and a measure of distance be-
tween the true data set and each simulation r½bDðuÞ;D$ is
computed. A set of parameters is retained in the posterior
distribution if the distance between D and bDðuÞ is lower than
a small value e. In other words, the posterior distribution is
composed of all the parameter sets u such that r½bDðuÞ;D$, e.
In practice, e is chosen such that a given, small fraction of the
prior parameter sets is retained in the posterior (Csilléry et al.
2012), but ABC will give the correct posterior distribution of
parameters only in the limit where e is close to zero.

The distance between the data set and simulation is often
definedbased on a set of statistics. This set of statisticsmust be
carefully chosen to be informative but of relatively low di-
mensionality. We conducted the analysis using either the full
set of observed log-fitness values (16–121 fitness values) or a
set of six summary statistics. The six summary statistics are as
follows: (1) the mean coefficient of selection of all single
mutants, (2) the mean epistasis coefficient between all pairs
of mutations averaged over all genetic backgrounds, (3) the
SD of selection coefficients, (4) the SD of epistasis, (5) the
correlation between the epistasis coefficient and the back-
ground fitness (specifically, for each pair of mutations, we
calculate the epistasis coefficient and the average fitness of
the two genotypes with one of the mutations and compute
the correlation between these two quantities across all pairs
of mutations and all genetic backgrounds), and (6) the max-
imal fitness value (Table S1). The distance of each simulated
data set to the experimental data set was

r
!bD;D

"
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnstat

i¼1

$ bSi2Si
mad

!bSi
"

vuut
%2

where nstat is the number of statistics, Si is the statistic i, and
bSi is the simulated statistic i. Statistics are normalized by the
median absolute deviationmadðbSiÞ, which is analogous to SD
but with medians instead of means. When statistics were the
full set of fitness values, genotypes were uniquely identified
by ordering mutations by their fitness effects.

We detailed earlier the rejection algorithm, where the
posterior is simply the fraction of parameters randomly drawn
from the prior distribution that generates simulated land-
scapes closest to the data. For this algorithm, we used a
tolerance (the fraction of retained simulations) of 0.005
(using the lower toleranceof0.0005didnot improveaccuracy,
Figure S1). In addition to the rejection algorithm, we used a
linear regression algorithm (Beaumont et al. 2002). In this
method, the posterior parameters are corrected using a local
linear regression of the parameter values onto the summary
statistics, givingmoreweight to simulations closer to the data
set. Last, we used a neural-network algorithm that adjusts the
posterior distribution based on a nonlinear regression using
neural networks (Blum and François 2010). The three meth-
ods are implemented in the R package “abc” ( R Development
Core Team 2010; Csilléry et al. 2012).

Details of the evolutionary simulations: We simulated a
large number of genotypic landscapes under Fisher’s model,
seeding the simulation with parameters u drawn from some
prior distributions (detailed later). The simulated landscapes
were based on Fisher’s model, a phenotypic fitness landscape
model whereby an organism is evolving under stabilizing se-
lection on n continuous phenotypic traits that together deter-
mine fitness. Each genotype is characterized by a phenotype
vector z ¼ fz1; z2; . . . ; zng consisting of n traits, where n is the
dimensionality of the phenotypic space. The parameter n de-
fines the number of phenotypes under selection, or “complex-
ity,” for an organism evolving in a given environment
(Tenaillon et al. 2007; Lourenço et al. 2011; Chevin et al.
2014). The effects of mutations are assumed to be additive
in the phenotypic space. For example, if we consider five mu-
tations at five distinct loci of the genome, the genotype 00101,
where the series of 0s and 1s denote the absence or presence of
mutations at each of five loci (relative to an ancestral strain
with genotype 00000), has phenotype z0 þ dz3 þ dz5, where
z0 is the phenotype vector of the ancestral strain, and dz3 and
dz5 are the phenotypic effects at mutations at loci 3 and 5. The
effects of mutations on phenotypes (the vectors dz) are drawn
from a multivariate normal distribution with mean 0 and
variance-covariance matrix s  In, where s is the size of
mutations. Thus, each mutation jointly affects all phenotypes
(assumption of full pleiotropy). Themapping of phenotype on
fitness is defined by log½WðzÞ$ ¼ logðWmaxÞ2 kzkQ þ e, where
Wmax is the maximal fitness, which determines the distance to
the optimum of the ancestral strain, kzk is the Euclidean norm
of the phenotype vector, and e is the experimental error on
fitness measurements. Following Wilke and Adami (2001)
and others (Tenaillon et al. 2007; Gros et al. 2009), we ex-
tended Fisher’s geometric model with the parameter Q, which

Epistasis and Fitness Landscapes 851



Cross-validation to check the accuracy of 
parameter inference

• We can cross-validate using simulation as focal datasets!
!

• Prediction error!
!
!
!
!
!
!
!
!
!
!
!
!
!

• 1. “Neural network” algorithm and use of summary statistics is best!
• 2. Small genotypic landscapes contain some information about W

max
, σ

mut
 but less so about n and Q!

• 3. Protocols involving selection are best, in particular the protocol with four large effect mutations

quantifies how flat the peak is at the optimum (Figure 1).
Fisher’s model, sensu stricto is the special case where Q ¼ 2,
i.e., the fitness function is Gaussian. Our definition of fitness
implies that the ancestral strain had log-fitness 0, correspond-
ing to the phenotype z0 ¼ f2logðWmaxÞ

1=Q
; 0; 0; . . . g. This

normalization was done without loss of generality. Maximum
fitness Wmax, which is the height of the fitness peak in the
environment where fitness is measured, was achieved when
all phenotypes are at their optimal value, chosen here to be
z ¼ 0 without loss of generality. Lastly, e is the measurement
error in log-fitness measure and was assumed to be normally
distributed with mean 0 and SD estimated from the empirical
data (File S1). Figure 1 shows several examples of a single
empirical genotypic landscape generated by sampling a small
number of mutations in the underlying landscape.

For each set of parameters u ¼ ðWmax;s; n;QÞ, we simu-
lated the process by which mutations were isolated and gen-
erated a genotypic landscape. In practice, the sets of genotypes
were of two broad categories: either four to five mutations
were isolated and genotypes bearing all possible combinations
of those mutations (24 or 25) were constructed or a larger
number of mutations (seven to nine) were isolated and single
and double mutants were constructed. Mutations were con-
sidered to be random, independently selected, or coselected.
For random mutations, simulations consisted of drawing the
phenotypic effects of mutations in the multivariate normal
distribution ð0;s  InÞ and then combining those mutations ad-
ditively and computing fitness using our phenotype-to-fitness
mapping. When mutations were isolated in an experiment in-
volving selection, we assumed that adaptation proceeded by
successive invasion of beneficial mutations without clonal in-
terference. This allowed us to conduct fast simulations based
on the strong-selection, weak-mutation (SSWM) approxima-
tion (Kimura 1983; Gillespie 1991), making it possible to con-
duct the large number of simulations required by ABC. Under
the SSWM regime, a selected mutation is drawn among the
pool of random mutations, with each mutation weighted by
max½0; s%, where s is the fitness effect of the mutation. This
derives from the fact that the probability of fixation of a ben-
eficial mutation is scaling linearly with its fitness effect s in this
regime (Patwa and Wahl 2008). Fitness effects were calcu-
lated relative to the ancestor for independently selected mu-
tations and relative to the genetic background with previously
evolved mutations for coselected mutations. For the protocol
where five mutations that together confer a large fitness effect
are isolated (H1-H2), we chose the set of five mutations that
confers the highest fitness among 1000 random combinations.

For each empirical landscape, 106 genotypic landscapes
were generated using 106 parameter sets drawn from prior
distributions. Priors were chosen to be uninformative and to
ensure that they could generate a diversity of fitness land-
scapes (Figure 1). The height of the peak in log-fitness
logðWmaxÞ was drawn from an exponential distribution
with mean 2. Maximum fitness on a log scale ranged from
3.7 3 1027 to 29 (2.5–97.5% quantile 0.05–7.4). The com-
plexity of the phenotypic space, the number of phenotypic

dimensions under selection, was given by n ¼ hþ 1, where '
denotes the floor function, and h was drawn from an expo-
nential distribution with mean 5. It ranged from 1 to 75
(2.5–97.5% quantile 1–7). We used an exponential prior
for complexity because, under Fisher’s model with full
pleiotropy, the distribution of fitness effects had unrealistically
small variance at high complexity. The size of mutations s
in the phenotypic space was drawn from an exponential dis-
tribution with mean 0.2. It ranged from 1.7 3 1027 to 2.6
(2.5–97.5% quantile 0.005–0.74). The choice of an exponen-
tial distribution was motivated by the fact that variations in
fitness are modest in many of the data sets, and therefore,
mutational effects are probably small. The shape of the peak
Q was drawn from a uniform distribution ½0:5; 4% (Figure 1).

Cross-validation

We checked the accuracy of inference from empirical land-
scapes using simulated pseudo–data sets generated under
Fisher’s model. We performed cross-validation using
nCV ¼ 500 pseudo–data sets generated under Fisher’s model
for each type of experimental protocol (Figure 2 and Table
2). We applied the ABC algorithm on each data set and
compared the posterior distribution of parameters to the
true (known) parameters. We computed the prediction
error, defined for each parameter as

P !~ui2ui
"2

nCVVðuÞ

where ui is the true value of the parameter used for the ith
simulated pseudo–data set, ~ui is the median of the posterior
distribution, and VðuÞ is the variance of the prior distribution.
The expected prediction error is 0 when inference is perfect
(the median always matches the true parameter) and 1 when
no inference can be made (the posterior parameters are
drawn at random from the prior). For cross-validation, we
assumed that experimental errors were 0 in order to compare
the accuracy of inference across protocols in an ideal case
where fitness values are perfectly known.

Posterior predictive checks

We next tested whether the empirical landscapes we analyzed
were compatible with the hypothesis that Fisher’s landscape
was the true model for the empirical data. We used posterior
predictive checking (Gelman et al. 2014) to quantify the good-
ness of fit of Fisher’s model to each data set. For each exper-
imental data set, we ran the ABC algorithm on 1000 random
pseudo–data sets generated using parameters drawn from the
joint posterior distribution of parameters. For each of these
pseudo–data sets, we recorded the median distance between
the pseudodata and the accepted (closest) simulated data in
the ABC algorithm. This resulted in a null distribution for the
median distance of the simulations retained in the ABC algo-
rithm, which is the distribution of distance between simula-
tions and data when Fisher’s model is truly underlying the
data. We then used this distribution to compute a Bayesian
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“Replicate” genotypic landscapes from the same 
biological system have similar underlying landscapes

Costanzo et al 2010, de Visser et al 1997, Whitlock and Bourguet 2000
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Two seemingly different genotypic landscapes from the 
same biological system have similar underlying landscapes

Sanjuan et al 2004

selection was not inferred with accuracy. Importantly, muta-
tions independently selected in several replicates conveyed
the most information on the underlying fitness landscape
because they allowed an exploration of the most informative
regions of the underlying landscapes. With a protocol that
included as few as four mutations and all 16 possible geno-
types carrying these fourmutations, the size of mutations and
the height and shape of the peakwerewell inferred (Table 2).

Fisher’s model did not accurately reproduce empirical
landscapes in six of nine biological systems tested. The con-
ceptual simplicity of Fisher’s model and its capacity, so far, to
reproduce several experimental observations have made it a
popular model to interpret experimental data and generate
theoretical predictions (Tenaillon 2014). Fisher’s model has
been used successfully before to predict the distribution of
epistasis coefficients (Martin et al. 2007). Fisher’s model also
generates sign epistasis by optimum overshooting when the
ancestral strain is close to the optimum or by pleiotropic
effects when two mutations have small positive fitness
effects (Blanquart et al. 2014).We suggest here that although
Fisher’s model is able to reproduce several statistical proper-
ties of fitness landscapes, it cannot account for their full struc-
ture in many cases. This leads to rejection of Fisher’s model
even with data sets of modest size. Fisher’s model could not
explain (1) sign epistasis far from the optimum (landscapes
A1 and I3 in Figure 5), (2) large negative or positive epistasis
(landscapes C1 and F in Figure 5), and (3) the large variance

in selection coefficients and double-mutant fitness (land-
scapes B and E in Figure 5). It will be interesting to see
whether these patterns can be explained by alternative phe-
notypic models that allow for some asymmetry around fitness
peaks, restricted pleiotropy (mutations affect only a subset of
the phenotypes), or anisotropy (mutations do not affect all
traits to the same extent).

Relationship with previous studies

To our knowledge, only three studies so far have attempted to
compare properties of empirical landscapes across species.
Szendro et al. (2013) quantified ruggedness for 10 experi-
mental landscapes using a set of summary statistics. They
showed that experimental levels of ruggedness are similar
to those obtained with simulations of simple landscapes
made of an additive component and random noise (rough
Mount Fuji landscapes). They noticed the strong effect of
the experimental protocol on the experimental landscape
and in particular that coselected mutations tend to produce
smoother empirical landscapes. However, their framework
did not allow disentangling sampling variation resulting from
protocol from variation owing to genuine biological differ-
ences between systems. Weinreich et al. (2013) analyzed
14 empirical landscapes, defined higher-order epistasis coef-
ficients, and showed that these coefficients make an impor-
tant contribution to fitness in all experimental landscapes.
Lastly, Weinreich and Knies (2013) fitted Fisher’s model to

Figure 3 Posterior distribution of parameters for all experimental landscapes. (From top to bottom) A1 andA2 (Aspergillus) and C1 and C2 (Drosophila);
the yeast deletion data set (B1–B10); virus evolving on their host (D (circle) and E1-E2 (squares)) and bacteria in a novel medium (F and G); adaptation to
an environment containing pyrimethamine (I3). The black point shows the median of the prior, and the dashed line delineates the 50% higher-density
region. The points show the median of the posteriors, and the shaded areas show the 50% higher posterior density regions for the data sets.
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Similar biological systems have similar 
underlying landscapes

Chou et al 2011, Khan et al 2011, Sanjuan et al 2004, Rokyta et al 2004

selection was not inferred with accuracy. Importantly, muta-
tions independently selected in several replicates conveyed
the most information on the underlying fitness landscape
because they allowed an exploration of the most informative
regions of the underlying landscapes. With a protocol that
included as few as four mutations and all 16 possible geno-
types carrying these fourmutations, the size of mutations and
the height and shape of the peakwerewell inferred (Table 2).

Fisher’s model did not accurately reproduce empirical
landscapes in six of nine biological systems tested. The con-
ceptual simplicity of Fisher’s model and its capacity, so far, to
reproduce several experimental observations have made it a
popular model to interpret experimental data and generate
theoretical predictions (Tenaillon 2014). Fisher’s model has
been used successfully before to predict the distribution of
epistasis coefficients (Martin et al. 2007). Fisher’s model also
generates sign epistasis by optimum overshooting when the
ancestral strain is close to the optimum or by pleiotropic
effects when two mutations have small positive fitness
effects (Blanquart et al. 2014).We suggest here that although
Fisher’s model is able to reproduce several statistical proper-
ties of fitness landscapes, it cannot account for their full struc-
ture in many cases. This leads to rejection of Fisher’s model
even with data sets of modest size. Fisher’s model could not
explain (1) sign epistasis far from the optimum (landscapes
A1 and I3 in Figure 5), (2) large negative or positive epistasis
(landscapes C1 and F in Figure 5), and (3) the large variance

in selection coefficients and double-mutant fitness (land-
scapes B and E in Figure 5). It will be interesting to see
whether these patterns can be explained by alternative phe-
notypic models that allow for some asymmetry around fitness
peaks, restricted pleiotropy (mutations affect only a subset of
the phenotypes), or anisotropy (mutations do not affect all
traits to the same extent).

Relationship with previous studies

To our knowledge, only three studies so far have attempted to
compare properties of empirical landscapes across species.
Szendro et al. (2013) quantified ruggedness for 10 experi-
mental landscapes using a set of summary statistics. They
showed that experimental levels of ruggedness are similar
to those obtained with simulations of simple landscapes
made of an additive component and random noise (rough
Mount Fuji landscapes). They noticed the strong effect of
the experimental protocol on the experimental landscape
and in particular that coselected mutations tend to produce
smoother empirical landscapes. However, their framework
did not allow disentangling sampling variation resulting from
protocol from variation owing to genuine biological differ-
ences between systems. Weinreich et al. (2013) analyzed
14 empirical landscapes, defined higher-order epistasis coef-
ficients, and showed that these coefficients make an impor-
tant contribution to fitness in all experimental landscapes.
Lastly, Weinreich and Knies (2013) fitted Fisher’s model to

Figure 3 Posterior distribution of parameters for all experimental landscapes. (From top to bottom) A1 andA2 (Aspergillus) and C1 and C2 (Drosophila);
the yeast deletion data set (B1–B10); virus evolving on their host (D (circle) and E1-E2 (squares)) and bacteria in a novel medium (F and G); adaptation to
an environment containing pyrimethamine (I3). The black point shows the median of the prior, and the dashed line delineates the 50% higher-density
region. The points show the median of the posteriors, and the shaded areas show the 50% higher posterior density regions for the data sets.

Epistasis and Fitness Landscapes 857

selection was not inferred with accuracy. Importantly, muta-
tions independently selected in several replicates conveyed
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because they allowed an exploration of the most informative
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reproduce several experimental observations have made it a
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theoretical predictions (Tenaillon 2014). Fisher’s model has
been used successfully before to predict the distribution of
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generates sign epistasis by optimum overshooting when the
ancestral strain is close to the optimum or by pleiotropic
effects when two mutations have small positive fitness
effects (Blanquart et al. 2014).We suggest here that although
Fisher’s model is able to reproduce several statistical proper-
ties of fitness landscapes, it cannot account for their full struc-
ture in many cases. This leads to rejection of Fisher’s model
even with data sets of modest size. Fisher’s model could not
explain (1) sign epistasis far from the optimum (landscapes
A1 and I3 in Figure 5), (2) large negative or positive epistasis
(landscapes C1 and F in Figure 5), and (3) the large variance

in selection coefficients and double-mutant fitness (land-
scapes B and E in Figure 5). It will be interesting to see
whether these patterns can be explained by alternative phe-
notypic models that allow for some asymmetry around fitness
peaks, restricted pleiotropy (mutations affect only a subset of
the phenotypes), or anisotropy (mutations do not affect all
traits to the same extent).
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To our knowledge, only three studies so far have attempted to
compare properties of empirical landscapes across species.
Szendro et al. (2013) quantified ruggedness for 10 experi-
mental landscapes using a set of summary statistics. They
showed that experimental levels of ruggedness are similar
to those obtained with simulations of simple landscapes
made of an additive component and random noise (rough
Mount Fuji landscapes). They noticed the strong effect of
the experimental protocol on the experimental landscape
and in particular that coselected mutations tend to produce
smoother empirical landscapes. However, their framework
did not allow disentangling sampling variation resulting from
protocol from variation owing to genuine biological differ-
ences between systems. Weinreich et al. (2013) analyzed
14 empirical landscapes, defined higher-order epistasis coef-
ficients, and showed that these coefficients make an impor-
tant contribution to fitness in all experimental landscapes.
Lastly, Weinreich and Knies (2013) fitted Fisher’s model to

Figure 3 Posterior distribution of parameters for all experimental landscapes. (From top to bottom) A1 andA2 (Aspergillus) and C1 and C2 (Drosophila);
the yeast deletion data set (B1–B10); virus evolving on their host (D (circle) and E1-E2 (squares)) and bacteria in a novel medium (F and G); adaptation to
an environment containing pyrimethamine (I3). The black point shows the median of the prior, and the dashed line delineates the 50% higher-density
region. The points show the median of the posteriors, and the shaded areas show the 50% higher posterior density regions for the data sets.
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Are experimental landscapes compatible 
with Fisher’s geometric model?

– Null hypothesis: the data follows Fisher’s model!
– “Bayesian p-value”



Statistical properties of experimental fitness 
landscapes are well explained by Fisher’s model

Dataset

p−
va

lu
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fungus
yeast
Drosophila
Virus 1
Virus 2
Bacteria 1
Bacteria 2
Drug resistance



The fitness of specific genotypes is not 
well predicted by Fisher’s model
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The fitness of specific genotypes is not 
well predicted by Fisher’s model
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The fitness of specific genotypes is not 
well predicted by Fisher’s model
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Conclusions

• Phenotypic fitness landscapes solve the problem of high dimensionality 
of genotypic landscapes!
!

• Empirical landscapes contain some information about Wmax, σmut but 
less so about Q and n!
!

• Empirical landscapes obtained with selected mutations contain more 
information on the underlying landscape!
!

• Fisher’s geometric model predicts well the statistical properties of 
fitness landscapes!

!
• In most systems some specific combinations of mutations have fitness 

not predicted by Fisher’s model!

Blanquart	and	Bataillon	Genetics	2016



Thank you for your attention!


