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Fitness landscape: definition

* Adaptation by natural selection
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* To predict the course of adaptation, we need to know the
map between genotypes and fithess: the fitness landscape



Representation of a fithness landscape

. Wright 1932

abcde

Frsure 1.—The combinations of from 2 to 5 paired allelomorphs.



Low-dimension representation of a fithess landscape

. Wright 1932
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Fisure 2—Diagrammatic representation of the field of gene combinations in two dimen-
sions instead of many thousands. Dotted lines represent contours with respect to adap-

tiveness.



Ruggedness requires epistasis

* epistasis = interaction for fithess between two mutations
€= Iog[W11] + |Og[Woo] - |Og[Wo1] - |Og[W1o]
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Fitness landscape models with tuneable
ruggedness

« Kauffman’s NK model 1987
* Nloci
* each locus acts in conjunction with K-1 loci
 fitness is the sum of contributions from each locus
 K=1is full additivity, K = N is a random landscape

* "Rough Mount Fuji” model Aita Husimi 1996

* fitness is the sum of contributions from each locus
plus random noise with variance v

« v=0 is full additivity, large v is a random landscape



A phenotypic fithess landscape model

Fisher’s geometric model of adaptation (1930)
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Experimental fithess landscapes

* 5 mutations in B-lactamase gene conferring resistance to cefotaxime
* Minimum Inhibitory Concentration of 25 = 32 genotypes is measured

Cefotaxime H1 - data

log-fitness
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number of mutations

» Adaptation can proceed through 18 trajectories out of the 120 possible
Weinreich et al 2006



Experimental fithess landscapes

A1, A2

B1-B10

C1,C2

D

E1, E2

G

H1, H2

H3, H4

1,12, 13

Aspergillus niger
Saccharomyces
cerevisiae

Drosophila
melanogaster

ssDNA bacteriophage
ID11

Vesicular stomatitis
virus

Escherichia coli

Methylobacterium
extorquens

Escherichia coli

Escherichia coli

Plasmodium falciparum
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2 datasets of 5 mutations, 2
genotypes

1711+3885 mutations, 5.4 million
genotypes

5 mutations, 2

9 mutations, 9 single mutants, 18
double mutants

6 mutations, 6 single mutants, 15
double mutants (E1)
28 mutations, 76 double mutants (E2)

5 mutations, 2

4 mutations, 2

5 mutations, 2

4 mutations, 2

4 mutations, 2

de Visser et al. 1997
de Visser et al. 2009

Costanzo et al. 2010

Whitlock & Bourguet
2000

Rokyta et al. 2011

Sanjuan et al. 2004

Khan et al. 2011

Chou et al. 2011

Weinreich et al. 2006
Tan et al. 2011

Schenk et al. 2013

Lozovsky et al. 2009
Brown et al. 2010
Jiang et al. 2013



- Can we infer the underlying fitness landscapes?

- Can we compare the underlying fitness landscape
across species and environments?

* Is Fisher’s geometric model explaining well the
structure of these genotypic landscapes?



Methods



log-fitness

Challenge 1: Diversity of protocols

Random mutations
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Challenge 2: Diversity due to small number of mutations sampled

log-fitness

five mutations which together
confer large resistance

Cefotaxime H1 - data

four large effect mutations

Cefotaxime H3 - data

four small effect mutations

Cefotaxime H4 - data
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Resolution of the two challenges

« Solution to challenge 1: simulate the details of the
protocol used to isolate each mutation

« Solution to challenge 2: simulate the fact that each
genotypic landscapes represents a small sample of
mutations among the myriad available mutations

=> Approximate Bayesian Computation
=> Fisher’s Geometric model of adaptation



Several arguments in favour of Fisher’s

geometric model

Any fitness optimum can be approximated as a Gaussian
so even if the landscape is multi-peaked, the population
only “sees” a single peak

Makes sense biologically to consider phenotypes instead
of genotypes

Emerges from mechanistic first principles (Martin 2014)

Predicts a number of experimental quantities (Martin et al.
2007, Perfeito et al. 2014, Schoustra et al. 2016)

Generates a diversity of landscapes with properties
similar to experimental landscapes (Blanquart et al 2014)
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Fisher’s geometric model: detalils

>

* Mutation effects on phenotypes follows
multivariate normal distribution with mean 0

_ « Additive effects of mutations in the
@ax' um phenotypic space

* Four parameters
W, ... maximum fitness
g o, .. sd of mutational effect

n: dimensionality of phenotypic space
Q: shape of the peak

phenotype 2

3-]‘|x

fitness 2.‘*.\\

fithess
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Overview of Approximate Bayesian Computation

The posterior is the 0.5%

Draw 106 Simulate 108 pseudo Compute distance parameter sets with smallest
parameter sets in ¥ datasets under —p' between each simulation = distance to focal dataset (rejection).
prior distribution Fisher’s model and focal dataset Possible to correct with regression

or neural network




Details of the evolutionary simulations

Random mutations

_4—

\ LB

Independently selected mutations
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Co-selected mutations
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« Strong selection, weak mutation approximation

» Several types of landscapes: all combinations of 5
mutations, all pair of mutations among 8 mutations, etc.



Details of the distance measure

Compute summary statistics for the focal dataset and for the
10° simulated pseudo-datasets

Distance between summary statistics of the simulated
pseudo-data and the focal dataset, normalised

We tested two sets of summary statistics:
« (1) all fitness values

* (2) mean and variance of selection coefficient, mean and
variance of epistasis, maximal fithess achieved, and
correlation between selection and epistasis



Cross-validation to check the accuracy of
parameter inference

* We can cross-validate using simulation as focal datasets

Z(éi—ei)z

* Prediction error
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* 1. “Neural network” algorithm and use of summary statistics is best

« 2. Small genotypic landscapes contain some information about Wmax, o but less so about n and Q

« 3. Protocols involving selection are best, in particular the protocol with four large effect mutations



Results



“Replicate” genotypic landscapes from the same
biological system have similar underlying landscapes

size of mutations o

02 03 04 05 06

00 0.1

— B1-B10 Yeast Deletion Mutants
\\
\
(
] '0‘0
T T T T T T
0 2 4 6 8 10

maximal fitness log(Wmax)

02 03 04 05 06
]

0.0 O0A1

B A1-A2 Aspergillus
B C1-C2 Drosophila

Costanzo et al 2010, de Visser et al 1997, Whitlock and Bourguet 2000



Two seemingly different genotypic landscapes from the
same biological system have similar underlying landscapes

log-fitness
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Similar biological systems have similar
underlying landscapes
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Are experimental landscapes compatible
with Fisher’s geometric model?

— Null hypothesis: the data follows Fisher’s model
— “Bayesian p-value”
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Statistical properties of experimental fitness
landscapes are well explained by Fisher’'s model
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p-value

The fithess of specific genotypes is not
well predicted by Fisher’s model

o _
- ] @ fungus
O vyeast
O Drosophila
@ _| [ O Virus 1
© B Virus 2
B Bacteria 1
B Bacteria 2
© _| B Drug resistance
o
<
o
N
o
o

Dataset



The fithess of specific genotypes is not
well predicted by Fisher’s model
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The fithess of specific genotypes is not
well predicted by Fisher’s model

p=0.83

A. niger A1 - data A. niger A1 - best simulated
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The fithess of specific genotypes is not
well predicted by Fisher’s model

p=0.
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The fithess of specific genotypes is not
well predicted by Fisher’s model

p=0.03
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Conclusions

Phenotypic fithess landscapes solve the problem of high dimensionality
of genotypic landscapes

Empirical landscapes contain some information about W but

less so about Q and n

max’ cImut

Empirical landscapes obtained with selected mutations contain more
information on the underlying landscape

Fisher’s geometric model predicts well the statistical properties of
fitness landscapes

In most systems some specific combinations of mutations have fitness
not predicted by Fisher’s model

Blanquart and Bataillon Genetics 2016



Thank you for your attention!



