When does a slime mould compute?

Memorial University
24 July 2014

Susan Stepney

Non-Standard Computation Research Group Department of Computer Science

if I say "computer", you probably think ...

but do you think ...?

you shouldn't be surprised

what is a computer?

- What does it mean to say that some physical system is "running" a computation?
 - as opposed to just "doing its thing"
- When does a physical system "compute"?

three steps to computers

first we need to answer:

- what is science?
 - how we represent a physical system as an "abstract model"

this will let us answer:

- what is engineering?
 - how we instantiate an abstract model as a physical system

and then this will let us answer:

- what is computing?
 - how we instantiate a computational model in a physical system

physical system represented abstract model instantiated

- a "good" theory makes ε "small enough"
 - among other things...
- if ε is too large, change the theory
 - reality trumps theory
- a theory is a model of reality
 - models are always approximations
 - approximations break down outside the model's valid domain
- a good theory allows prediction without needing a "reality check" every time a prediction is made
 - within the domain where the approximations hold

good scientific theory: prediction

- a "good" theory makes ε "small enough"
 - among other things...
- if ε is too large, change the theory
 - reality trumps theory
- a theory is a model of reality
 - models are always approximations
 - approximations break down outside the model's valid domain
- a good theory allows prediction without needing a "reality check" every time a prediction is made
 - within the domain where the approximations hold

good scientific theory: prediction

definition

here, prediction is:

using an **abstract** dynamics C of a **well-characterised** physical system to **infer** its **physical** dynamics H (subject to a representation R)

technology / engineering

physical artefact represented engineering model instantiated

technology / engineering

engineering

- a "good" instantiation p makes ε "small enough"
 - among other things...
- if ϵ is too large, \mathbf{p} needs to be changed
 - the (desired) model trumps reality
- a theory is a model of reality
 - models are always approximations
 - approximations break down outside the model's valid domain
- a good instantiation allows use without needing a "theory check" every time the system is used
 - within the domain where the approximations hold

well-engineered technology

well-engineered technology

inferring

- who, or what, is doing the inferring?
 - a long complicated calculation
 - done with pen and paper ...
 - ... or with a computer!

computing


```
1: for t = 0 to p - 1 {each automaton state in the ash} do
        while there is a live cell c that has not been processed yet do
3:
            if c \notin \Omega {c is not contained in any oscillator} then
 4:
               {create a new oscillator O containing just c and its current state}
               O := \{(c, \sigma_t(c))\}; \Omega := \Omega \cup \{O\}
 5:
            else { c is in an oscillator, with (c, S) \in O }
               S := S + \sigma_t(c) {update c's state list with c's current state}
 6:
 7:
            end if
 8:
            for each n \in N(c) {each of cell c's neighbourhood cells} do
               if \sigma_t(n) = \blacksquare \{n \text{ is alive}\}
               or \sigma_t(n) = \square and |N_t^{\blacksquare}(n)| \ge 3
                      \{n \text{ is dead and has three or more live cells in its neighbourhood}\} then
10:
                   O := O \cup \{(n, \sigma_0(n), \dots, \sigma_t(n))\} \{ \text{add } n \text{ to } O \}
11:
               end if
12:
            end for
13:
            if any of the cells n added to O are already a member of another oscillator R then
14:
               O := O \cup R; \Omega := \Omega - \{R\} {combine O and R}
15:
16:
            continue recursively processing all neighbourhood cells n added to O
17:
        end while
18: end for
```

computing

computing

- a "good" instantiated computer **p** makes ε "small enough"
 - among other things...
- if ε is too large, \mathbf{p} needs to be changed
 - the (desired) computation trumps reality
- a theory is a model of reality
 - models are always approximations
 - approximations break down outside the model's valid domain
- a well-instantiated computer allows use without needing a "computation check" every time the system is used
 - within the domain where the approximations hold

well-engineered computer / program

well-engineered computer / program

definition

computation is:

using the **physical** dynamics \mathbf{H} of a **well-engineered** physical system to **predict** an **abstract** dynamics \mathbf{C} (subject to an encoding \mathbf{R})

unconventional computing

- there is nothing in the definition about the nature of the physical system
 - beyond being "well-engineered"
- it doesn't have to be silicon
- it doesn't have to be a conventional computer
- we can use this definition to understand how unconventional physical systems compute

example: wooden sticks

- calculation: multiplication
- theory: how lengths of bits of wood combine
 - they add together linearly
- instantiation: abstract numbers instantiated as physical lengths
- real world: join lengths together
- output : read off the total length
 - logarithmic scale : so multiplies the values

example: slime mould

- calculation: solving a maze
- theory: how slime moulds behave in presence of food
 - they minimise distances
- instantiation: chopped up slime mould covers maze
 - food sources at entrance and exit
- real world: slime mould contracts, joining the sources
- output: read off path taken by slime mould

requirements for a physical computer

(i) a well-characterised substrate

$$\begin{split} &\frac{\partial U_{i}^{0}}{\partial t}(\vec{x},t) - \frac{1}{Re} \sum_{j=1}^{3} \frac{\partial^{2} U_{i}^{0}}{\partial x_{j} \partial x_{j}}(\vec{x},t) + \frac{\partial U_{4}^{0}}{\partial x_{i}}(\vec{x},t) \\ &+ \sum_{j=1}^{3} \left(U_{j}^{0}(\vec{x},t) \frac{\partial U_{i}^{0}}{\partial x_{j}}(\vec{x},t) + \sum_{j_{1}=1}^{4} \int_{\vec{x}_{1},t_{1}} U_{jj_{1}}^{1}(\vec{x},t;\vec{x}_{1},t_{1}) \frac{\partial U_{ij_{1}}^{1}}{\partial x_{j}}(\vec{x},t;\vec{x}_{1},t_{1}) d\vec{x}_{1} dt_{1} \right) = 0 \\ &\sum_{j=1}^{3} \frac{\partial^{2} U_{4}^{0}}{\partial x_{j} \partial x_{j}}(\vec{x},t) + \sum_{i,j=1}^{3} \left(\frac{\partial U_{i}^{0}}{\partial x_{j}}(\vec{x},t) \frac{\partial U_{j}^{0}}{\partial x_{i}}(\vec{x},t) + \sum_{j_{1}=1}^{4} \int_{\vec{x}_{1},t_{1}} \frac{\partial U_{ij_{1}}^{1}}{\partial x_{j}}(\vec{x},t;\vec{x}_{1},t_{1}) \frac{\partial U_{ij_{1}}^{1}}{\partial x_{i}}(\vec{x},t;\vec{x}_{1},t_{1}) \right) = 0 \\ &\frac{\partial U_{ij_{1}}^{1}}{\partial t}(\vec{x},t;\vec{x}_{1},t_{1}) - \frac{1}{Re} \sum_{j=1}^{3} \frac{\partial^{2} U_{ij_{1}}^{1}}{\partial x_{j} \partial x_{j}}(\vec{x},t;\vec{x}_{1},t_{1}) + \frac{\partial U_{ij_{1}}^{1}}{\partial x_{i}}(\vec{x},t;\vec{x}_{1},t_{1}) + \frac{\partial U_{ij_{1}}^{1}}{\partial x_{i}}(\vec{x},t;\vec{x}_{1},t_{1}) + U_{jj_{1}}^{1}(\vec{x},t;\vec{x}_{1},t_{1}) \frac{\partial U_{ij_{1}}^{0}}{\partial x_{j}}(\vec{x},t) \right) = 0 \\ &\sum_{i=1}^{3} \frac{\partial^{2} U_{4j_{1}}^{1}}{\partial x_{j} \partial x_{j}}(\vec{x},t;\vec{x}_{1},t_{1}) + \sum_{i,i=1}^{3} 2 \frac{\partial U_{i}^{0}}{\partial x_{j}}(\vec{x},t) \frac{\partial U_{jj_{1}}^{1}}{\partial x_{i}}(\vec{x},t;\vec{x}_{1},t_{1}) = 0 \end{split}$$

- including domain of applicability
 - eg, "shortest path" is a rough approximation, for small systems

substrate theories

- well-developed
 - solid state transistors
 - classical mechanics, quantum mechanics
 - reaction-diffusion chemistry
- phenomenological
 - biology
 - extrapolation and scaling issues
- naïve
 - approximate
 - shortest path
 - counterfactual
 - unbounded speeds
 - non-atomic

(ii) a well-engineered instantiation

http://sites.google.com/site/nottetris/

engineering issues

- theory composition
 - multiple components
 - multiple kinds of components
 - interconnections
 - control
 - programming
- scaling
 - interpolation
 - extrapolation
 - model breaks down

(iii) a pre-defined encoding/decoding

Nope

(iv) and a natural fit to the problem

not here ...

Tax Return 2010

Tax year 6 April 2009 to 5 April 2010

natural fit

- the fit between the desired abstract dynamics and the possible physical dynamics
- small "semantic gap"
 - actually pretty poor for conventional computers!
 - "torturing" silicon to implement boolean logic
- smaller gap with other substrates, other computational models?
 - analogue computers
 - other unconventional approaches

acknowledgments

Clare Horsman, Susan Stepney, Rob C. Wagner, Viv Kendon. When does a physical system compute?
Proceedings of the Royal Society A, 470(2169):20140182
doi: 10.1098/rspa.2014.0182