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if | say “computer”, you probably think ...




but do you think...?




you shouldn’t be surprised

Antikythera, c.80CE
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what is a computer?

* What does it mean to say that some physical system is
“running” a computation?
= as opposed to just “doing its thing”

* When does a physical system
“compute’?




three steps to computers

first we need to answer:

e what is science?

= how we represent a physical system
as an ‘“abstract model”

this will let us answer:
e what is engineering?

= how we instantiate an abstract model
as a physical system

and then this will let us answer:
e what is computing?

* how we instantiate a computational model
in a physical system
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science

“ ” theory mak ““small en h”’
a “good” theory makes ¢ “small enoug Phicgision In alr

= among other things...

if € is too large, change the theory

= reality trumps theory A
snes

a theory is a model of reality
= models are always approximations

= approximations break down
outside the model’s valid domain

a good theory allows prediction without
needing a “reality check” every time
a prediction is made

= within the domain where the approximations hold
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good scientific theory : prediction
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good scientific theory : prediction
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definition

here, prediction is:

using an abstract dynamics C
of a well-characterised physical system

to infer its physical dynamics H

(subject to a representation R)



technology [ engineering
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technology [ engineering
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engineering

a “good” instantiation p makes ¢ “small enough”
= among other things...

if € is too large, p needs to be changed

= the (desired) model trumps reality

a theory is a model of reality
= models are always approximations

= approximations break down outside
the model’s valid domain

a good instantiation allows use without
needing a “theory check” every time
the system is used

= within the domain where the approximations hold
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well-engineered technology
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well-engineered technology
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inferring

infer
C(m(p))

* who, or what, is doing the inferring?
= along complicated calculation
= done with pen and paper-...

= ... orwith a computer!
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computing

represented .
computer _ > computation
instantiated

1: fort =0to p—1 {each automaton state in the ash} do
2 while there is a live cell ¢ that has not been processed yet do
3: if ¢ ¢ Q {cis not contained in any oscillator} then
4: {create a new oscillator O containing just ¢ and its current state }
0:={(c,01(c))}: 2 :=QU{0}
5 else { c is in an oscillator, with (¢,S) € O }
6: §:= 5+ 0;(c) {update ¢’s state list with ¢’s current state }
7: end if
8: for each n € N(c) {each of cell ¢’s neighbourhood cells} do
9 if o;(n)=m {nisalive}
or 6;(n) = oand [IN®(n)| >3
{n is dead and has three or more live cells in its neighbourhood} then

10: 0:=0U{(n,0p(n),...,01(n))} {add nto O}

11: end if

12: end for

13: if any of the cells n added to O are already a member of another oscillator R then
14: 0:=0UR; Q := Q — {R} {combine O and R}

15: end if

16: continue recursively processing all neighbourhood cells n added to O

17:  end while

18: end for
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computing

computation R
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computing

a ““good” instantiated computer p makes ¢ “small enough”

= among other things...

if € is too large, p needs to be changed

= the (desired) computation trumps reality

a theory is a model of reality
= models are always approximations

= approximations break down outside
the model’s valid domain

a well-instantiated computer allows use
without needing a “computation check”
every time the system is used

= within the domain where the approximations hold
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well-engineered computer [ program
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well-engineered computer [ program
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definition

computationis:

using the physical dynamics H
of a well-engineered physical system

to predict an abstract dynamics C
(subject to an encoding R)



unconventional computing

e there is nothing in the definition about the nature of the
physical system

= beyond being “well-engineered”
e it doesn’t have to be silicon

e it doesn’t have to be a conventional computer

e we can use this definition to understand how unconventional
physical systems compute
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example : wooden sticks

e calculation : multiplication

e theory : how lengths of bits of wood combine
= they add together linearly

* instantiation : abstract numbers instantiated as physical lengths

e real world : join lengths together

* output : read off the total length

= logarithmic scale : so multiplies the values
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example : slime mould

e calculation : solving a maze

e theory : how slime moulds behave in presence of food

= they minimise distances

e instantiation : chopped up slime mould covers maze

= food sources at entrance and exit

e real world : slime mould contracts, joining the sources

e output : read off path taken by slime mould
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requirements for
a physical computer



(i) a well-characterised substrate
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¢ including domain of applicability

= eg, “shortest path’ is a rough approximation, for small systems
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substrate theories

* well-developed
= solid state transistors
= classical mechanics, quantum mechanics

= reaction-diffusion chemistry

e phenomenological
= biology
¢ extrapolation and scaling issues
* naive
= approximate
¢ shortest path

= counterfactual
¢ unbounded speeds

¢ non-atomic
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(ii) a well-engineered instantiation

http://sites.google.com/site/nottetris/
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engineering issues

e theory composition
* multiple components
= multiple kinds of components
= interconnections
= control
" programming
e scaling
" interpolation

= extrapolation

+ model breaks down
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a pre-defined encoding/decoding




(iv) and a natural fit to the problem

not here....
e
HM Revenue TaX REturn 201 0
@ & Customs Tax year 6 April 2009 to 5 April 2010

36



natural fit

 the fit between the desired abstract dynamics and the possible
physical dynamics

e small “semantic gap”

= actually pretty poor for conventional computers!

= “torturing” silicon to implement boolean logic

e smaller gap with other substrates, other computational
models?
= analogue computers

= other unconventional approaches
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