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Publishable summary 

Evolution is the major source of biological complexity on Earth, being at the origin of all the species 
we can observe, interact with or breed. On a smaller scale, evolution is at the heart of the 
adaptation process for many species, in particular microorganisms (e.g., bacteria, viruses…). 
Microbial evolution results in the emergence of the species itself, and it also contributes to the 
microorganisms’ adaptation to perturbations or environmental changes. These organisms are not 
only shaped by evolution, they are also build to evolve. In other words, they have evolved their 
evolutionary capabilities, a process we call “evolution of evolution” or EvoEvo. 

The EvoEvo project has used this “evolution of evolution” property to develop new evolutionary 
approaches in information science; our ultimate goal being to address open-ended problems, 
where the specifications are either unknown or too complicated to be expressed, and to produce 
software able to operate in unpredictable, varying conditions. To achieve this ambitious goal, the 
project organized a 4-steps transfer of knowledge from life sciences to information technology: 
1. Since the processes by which evolution evolves (“EvoEvo strategies”) are not fully understood, 

we started from experimental observations of microorganism evolution in order to observe, 
quantify and characterize the EvoEvo strategies in microorganisms at the level of genomes, 
biological networks and populations (WP1). This has been achieved through experimental 
evolution and bioinformatics in order to gain a better understanding of this phenomenon and 
contribute evolutionary theory by allowing understanding of the surprisingly high pace of 
evolution of microorganisms. 

2. These EvoEvo strategies have been simulated in a computational framework. The simulations 
use individual-based models to help analyse the results of the evolution experiments (WP2). 
They have helped us to propose hypotheses on the structural roots of EvoEvo at the levels of 
genetic sequences, regulation and metabolic networks, and cell populations (WP3). These 
models also constitute the basis of the computational evolutionary platform. EvoEvo has thus 
contributed to computational biology by the development of integrated computational 
evolutionary models that are available for the scientific community. 

3. The computational models developed in WP2 have been used to design a computational 
evolution platform to exploit evoevo in application software (WP4). This platform is directly 
inspired from the in silico models, but simplifications and generalizations have been made. 
The former remove from the models all the biological specificities that are not useful to exploit 
EvoEvo. The later enable the framework to be used in different application contexts. EvoEvo 
has thus contributed to evolutionary computation by the development of a new framework that 
uses evolution of evolution at its heart. 

4. We have applied EvoEvo to real ICT problems (WP5). Two applications of increasing difficulty 
have been explored: subspace clustering of WiFi signals (“EvoWave”), and a musical personal 
companion that follows a dancer and learns to play music according to the dancer’s moves 
(“EvoMove”). The ability to effectively exploit EvoEvo in these applications constitutes the final 
proof of concept that evolution of evolution can drive future technologies in an efficient way. 

The EvoEvo project impacts ICT, through the development of new technologies. It also impacts 
biology and public health, by providing a better understanding of microorganism adaptation (such 
as the emergence of new pathogens or the development of antibiotic resistances). 
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1. Introduction 

EvoEvo (“Evolution of Evolution”) was a three year FP7-ICT project (call ICT-2013.9.6 - FET 
Proactive: Evolving Living Technologies - EVLIT). This final report covers the three years of the 
EvoEvo project, from November 1st 2013 (beginning of the project) to October 31th 2016. The 
EvoEvo consortium is composed of five partners: INRIA (France), UGA (formerly UJF, France), 
Utrecht University (The Netherlands), University of York (UK), and CSIC (Spain). EvoEvo aims 
were to study the “Evolution of Evolution” processes (i.e., the processes by which evolution 
modifies itself and influences its own pace) and to exploit these processes in ICT applications in 
order to develop new “living” technologies. 

EvoEvo achieved its objectives through a work plan containing 6 workpackages: WP6 
management; WP1 in vivo experiments; WP2 model design; WP3 in silico experiments; WP4 
computational framework design; WP5 applications. More precisely, the EvoEvo workplan 
organization is based on three principles that guarantee that the biological foundations of EvoEvo 
are effectively and efficiently transmitted to the computation application through modelling and 
framework development steps. The three principles are the following: 

• A route from evolutionary biology (WP1) to artificial evolution (WP4) through modelling 
(WP2). 

• Parallelism between in vivo experimental evolution (WP1) and in silico experimental 
evolution (WP3). 

• Applicative targets (WP5) that will make profit from both the computational framework 
designed in WP4 and from EvoEvo knowledge produced in WP3. 

 

 

Figure 1 – Organization of the EvoEvo project. Arrows indicate dependencies between the 
workpackages. As the project will go on, it progressed from left to right and from top to bottom, 
i.e. from experimental biology to ICT applications. 
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This report describes the work done and the results gathered in all the aspects of the project, from 
life science to ICT applications. It is organized in three parts. In the first part (section 2, Description 
of the work), the work accomplished during the project is described one workpackage after 
another. This first part is complementary to the deliverables and publications produced during the 
project; the detailed information provided in those different deliverables is not repeated here. 
Pointers to the corresponding deliverables and publications are provided when necessary. The 
next two sections (section 3, General insights on the EvoEvo process; section 4, General insights 
on living technologies) focus specifically on the two central concepts of the project: EvoEvo and 
living technologies. These sections do not correspond to a specific WP or to a specific deliverable, 
but rather to general insights that the whole project has revealed on both concepts. 

2. Description of the work 

2.1. Introduction 
This section presents the results of the project for each workpackage. For each WP the 
presentation of the results is organized by “contributions”, which sometimes diverge from the initial 
structure of the project (in which each WP was composed of “tasks”). This enables us to better 
emphasize the results. Note that this section does not replace the detailed description of the work 
presented in the project deliverables (available on the project website – see 
http://www.evoevo.eu/deliverables/ and section 2.7.2), nor the detailed results presented in the 
project publications (see http://www.evoevo.eu/publications/ and section 2.7.3) 

2.2. Workpackage 1: Experimental observation of EvoEvo in action 

2.2.1. Introduction 

WP1 explored EvoEvo properties in two microorganisms (the model bacterium Escherichia coli and 
the RNA virus tobacco etch Potyvirus, TEV). Both organisms evolve at a high pace but their 
molecular structures are very different. Identification of traits that confer them their high 
evolutionary potential was the objective of WP1. These traits fed the computational models and 
were tested in the computational experiments, thus constituting the first step in the biological-to-
application scheme of EvoEvo (Figure 1). 

 

Figure 2: Position of WP1 in the biology-to-application scheme of EvoEvo 
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In WP1, we addressed experimentally the pace of evolution of microorganisms and related it to 
their robustness (task 1.1), evolvability (task 1.2) and open-endedness (task 1.3). In particular, we 
addressed the relationship between robustness and evolvability by directly testing whether more 
robust genotypes are also more evolvable or, by contrast, whether they adapt in a slower pace to 
new environmental conditions. We tackled these issues using in vivo experimental evolution, which 
consists in propagating living organisms for hundreds to tens of thousands of generations in 
defined environments. It provides a powerful methodology to analyse the molecular basis of 
adaptation and to draw a rigorous phenotype-to-genotype map. We used two different 
experimental systems, an RNA virus (TEV) and a bacterium (E. coli), both of which have become 
classic models in experimental evolution that allow detailed genetic manipulations and analyses. 
Furthermore, given their short generation times, large population sizes and, in the case of the RNA 
virus high mutation rates, relevant evolutionary changes take place after short periods of time, 
allowing us to observe evolution in action. 

2.2.2. Contribution 1 (Task 1.1): Robustness at the population, regulatory network 
and genome levels 

Section 1: Robustness at the population level in the TEV experimental system 

Robustness at the population level was investigated by generating a collection of TEV strains and 
evolved populations that differed in their gene order and content (deliverable D1.1). Some of these 
engineered genomes contain additional genes (increased complexity), some containing fewer 
genes (reduced complexity), some containing multiple copies of the same gene (functional and 
genetic redundancy), and some containing additional genes that are functionally redundant with 
native genes (functional redundancy). All these engineered genotypes have been evolved under 
controlled environmental conditions (i.e., host species, effective population size and mutation 
rates) and their fitness and robustness evaluated. Four experimental treatments were performed 
(described in Task 1.1 of Section 1 of the proposal) combining small and large population sizes 
with low and high mutation rates in a factorial manner. These experiments were performed in the 
reservoir host, Nicotiana tabacum. Multiple independent lineages were evolved under each 
environmental condition. Details are provided in deliverable D1.2. 

We found that both main factors effective population size and mutation rate had significant effects 
on the robustness of the evolved lineages. Population size itself had a significant effect on 
robustness, with populations evolved at large effective population size being more robust than 
populations evolved under small effective population sizes. By contrast, evolving at high mutation 
rate had no net significant effect on robustness. However, interestingly, the effect of mutation rate 
was strongly dependent on the effective population size: viral populations increased robustness in 
the combination of high mutation rate and small effective population size; in contrast viral 
populations became more sensitive to mutational load when evolved at large effective population 
size and high mutation rates. Finally, independent lineages evolved under the same conditions 
showed differences in their robustness, as a result of the random effect of adaptive mutations fixed 
by each lineage. 

In conclusion, we found that the theoretical predictions made by Krakauer and Plotkin (2002) for 
the evolution of population-level robustness were partially fulfilled for TEV: viral populations 
evolved under conditions of large effective population size become more robust than populations 
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evolved at small effective population sizes. However, the hypothesis of a positive synergism 
between mutation rate and effective population size was not fulfilled in our experimental system. 

Section 2: Robustness at the regulatory network level in the E. coli experimental model 

Robustness at the regulatory level was investigated by deleting the crp gene, encoding one of the 
biggest regulatory proteins in E. coli, in the ancestor of the long-term experimental evolution 
(LTEE) and in evolved clones sampled over evolutionary time in the 12 populations (see 
deliverable D1.2). First, the effect of the deletion was investigated in the glucose minimal medium 
that was used in the LTEE. The crp deletion had a much more dramatic effect, on both growth 
rates and global transcription profiles, in evolved clones than in the ancestor. Since crp itself was 
not affected by mutations during evolution, these differential effects of the crp deletion were 
diagnostic of epistatic interactions between the crp deletion and beneficial mutations that occurred 
during evolution. Therefore, these changes in epistatic interactions sustained the robustness of 
regulatory networks by rewiring them. 

In one of the twelve populations, called Ara–1, we identified the mutation that affected the 
robustness of the CRP-controlled regulatory network during evolution. This mutation affected the 
topA gene, encoding topoisomerase I, which is involved in the control of DNA topology in bacterial 
cells. This mutation occurred early during evolution (before 2000 generations) and was shown to 
be beneficial during the LTEE. We thus demonstrated that the control of DNA topology in bacterial 
cells actively contributed to the robustness of regulatory networks. Changes in DNA topology, 
which were beneficial in the LTEE by increasing the fitness of bacterial cells, also had a dramatic 
side effect by decreasing the robustness of the cells after a genetic perturbation (here, deletion of 
crp). Therefore, increased evolvability by DNA topology changes was associated with decreased 
robustness. These data are included in a manuscript in preparation (Wielgoss et al., 2016) 

Second, we tested the effect of the crp deletion in alternative environments (different from the one 
prevailing during the LTEE). Perturbing the regulatory network by deleting crp affected growth 
more severely in the evolved clones than in the ancestor only in the minimal glucose medium in 
which the evolution occurred and not in alternative environments. This suggests that evolution in 
the glucose environment strongly selected a particular structure of the regulatory network and that 
disturbing this structure resulted in lower robustness of the evolved clones specifically in that 
environment. 

Section 3: Robustness at the genome level in both TEV and E. coli experimental models 

The mutational robustness of the engineered TEV strains generated for deliverable D1.1 was 
evaluated using a protocol specifically developed to this end. We exposed viral particles from each 
one of the strains to the chemical mutagen HNO2 at increasing incubation periods, and evaluated 
the infectivity (as a proxy of viral fitness) after each exposition time. The logic of this assay was as 
follows: the more robust a genotype, the less affected would it be by the treatment with HNO2. 
Details can be found in deliverable D1.2. TEV-alkB and TEV-2b genomes encode for additional 
functional genes: the alkB domain involved in removing alkylation damage from RNA and the 2b 
suppressor of RNA silencing from Cucumber mosaic virus (CMV). A priori, a fitness benefit was 
expected for these two genes, either in terms of reducing mutational load or in terms of better 
interfering with the host defenses. In addition, carrying the 2b gene adds functional redundancy 
(i.e., a second suppressor of RNA silencing in addition to the normal one, HC-Pro) without adding 
genetic redundancy. TEV-eGFP encodes for an additional gene, the eGFP marker which does not 
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provide any fitness benefit to the virus. Finally, TEV-2NIb2 carries a duplication of the viral 
replicase gene NIb cloned in the second proteolytic position of the genome. This duplication 
generates both genetic and functional redundancy. We found significant differences in robustness 
between all the 11 genetic architectures, being the wildtype virus the most robust one and the 
TEV-alkB the less robust one. In conclusion, TEV wildtype genome architecture is more robust to 
mutational effects than any alternative one we have engineered in the laboratory. Any possible 
benefit of genetic redundancy in viral RNA genomes does not pays off the cost of replicating a 
longer genome. Interestingly, we observed that the average effect of deleterious mutations 
affecting non-coding regulatory regions was weaker than for mutations affecting coding sequences. 
By contrast, the magnitude of positive epistasis was stronger in regulatory than in coding 
sequences due to the role of RNA folding in the regulation of transcription and translation (Bernet 
and Elena, 2015). 

In E. coli, three strategies were used. First, we investigated the impact of large chromosomal 
rearrangements on the evolution of bacterial cells (these data were published during the EvoEvo 
project in (Raeside et al., 2014), see also Deliverable 1.2). More than 100 large chromosomal 
rearrangements (deletions, duplications, amplifications, inversions) were substituted in all 12 
populations after 40,000 generations. We showed that some rearrangements were involved in the 
fitness increase during bacterial evolution. 

Second, we investigated the effect of increased mutation rates on the robustness of the genomes 
during evolution. We showed that the mutation rate increase had a large impact on genome 
evolution. Indeed, we found deleterious mutations that were substituted due to the increased 
mutation rates. We showed that these deleterious effects were compensated by the activity of RNA 
chaperones and this was the first proof of this buffering effect of RNA chaperones. These results 
have been already published (Rudan et al., 2015). 

Third, we sequenced the genome of 264 evolved clones that were sampled in all 12 populations 
from the LTEE at ten different time points during 50,000 generations of evolution. This allowed us 
to analyse the effects of the rates and interactions between mutations and to determine the 
proportion of beneficial mutations. These data have also been published (Tenaillon et al., 2016). 
We showed that the fraction of beneficial mutations declined as fitness rises, and neutral mutations 
accumulated at a constant rate. Nonsynonymous mutations, intergenic mutations, insertions and 
deletions are overrepresented in the long-term populations, further supporting the inference that 
most mutations that reached high frequency were favoured by selection. These results illuminate 
the shifting balance of forces that govern genome evolution in populations adapting to a new 
environment. 

Resources committed 

Partner 2 (University Grenoble Alpes): 

• Gaffé, Joël: assistant professor 
• Hindré, Thomas: assistant professor 
• Lamrabet, Otmane: post-doctoral fellow 
• Raeside, Colin: PhD student 
• Schneider, Dominique: Professor 
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Partner 5 (CSIC): 

• Bernet, Guillermo P.: post-doctoral fellow 
• Carrasco, José L.: post-doctoral fellow 
• De la Iglesia, Francisca: lab. engineer 
• Elena, Santiago F.: Professor 
• Willemsen, Anouk: PhD student 
• Zwart, Mark P.: post-doctoral fellow 

2.2.3. Contribution 2 (Task 1.2): Evolvability at the population and regulatory 
network levels 

Section 1: Evolvability at the population level in the TEV experimental model 

The evolvability of the different TEV genotypes constructed for deliverable D1.1 was assessed by 
performing evolution experiments with each one of them into a set of novel host species. The 
magnitude of fitness improvement observed in each case was taken as a proxy to evolvability. Ten 
lineages of each engineered genome organization were maintained by undiluted serial passages in 
each of three hosts: N. tabacum (the natural reservoir), Nicotiana benthamiana and Datura 
stramonium (two novel hosts). In all cases, three 9-weeks passages were performed. Under such 
demographic conditions, we had previously shown that the effect of selection in fixing beneficial 
alleles was maximized. To explore the evolution of viral genomes under relaxed selective 
pressures, wildtype viruses were evolved in transgenic plants expressing the TEV replicase NIb 
gene. Details on these experiments are provided in deliverables D1.3 and D1.5. 

We found that the extent by which fitness was improved strongly depended on (i) the fitness of the 
starting clone and (ii) the novel host. The lower the fitness of the starting clone, the larger the 
magnitude of fitness improvement observed. While fitness improvements in the reservoir host were 
always associated to the removal of additional genes, except in the case of the 2b silencing 
suppressor from CMV, fitness in alternative hosts not always concurred with the removal of 
additional genetic material. We concluded from these experiments that increases in genome 
complexity (by horizontal gene transfer of new genes) only compensates if the added function 
provides a short-term benefit. Any second-order benefit, as for instance increased robustness due 
to genetic redundancy, did not paid for the cost of replicating longer genomes. These results have 
been published in (Zwart et al., 2014; Willemsen et al., 2016a; Willemsen et al., 2016b). If a viral 
gene was constitutively expressed from the host genome, viral populations evolved that have 
removed their own copy. This proves that selection for fast replication is the dominant selective 
force operating over viral populations. This result are published in (Tromas et al., 2014). 

In the case of reorganized genomes (Majer et al., 2014), virus accumulation significantly improved 
in all cases to levels close to those observed for the wildtype virus. However, viruses with altered 
gen orders remained weaker competitors than the wildtype TEV during head-to-head competition 
experiments, meaning that the fitness cost associated to gene order alterations was large and 
difficult to compensate. These results are published in (Willemsen et al. 2016b; Willemsen et al., 
2016c) and reviewed in (Elena, 2016a). 

Finally, we explored the effect that past evolutionary events had on the evolvability of TEV 
populations. To do so, we generated a collection of mutants that occupied different positions in the 
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adaptive fitness landscape, at increasing distances from the local optimum, and evaluated the 
likelihood of these genotypes to reproduce the adaptive walk and reach this local optimum. We 
found that reproducibility of evolution was very low and that most of the evolved lineages moved to 
different regions in the adaptive landscape. These results are published in (Cervera et al., 2016a). 

Section 2: Evolvability at the regulatory network level in the E. coli experimental model 

A manuscript including the results of this section is currently in preparation (Lamrabet et al., 2016). 

New evolution experiments were started with ancestors corresponding to crp-deleted strains 
chosen from the results obtained during Task 1.1 (contribution 1). Four different such ancestral 
strains with highly perturbed regulatory networks were chosen and propagated (five replicates 
each) by daily transfers in an environment in which they had very low fitness (see deliverable 
D1.5). The fitness defects were restored after only 100 generations of evolution in all genetic 
backgrounds (see deliverables D1.3 and D1.4). The genomes of evolved clones were sequenced 
to identify the mutations that restored fitness after the perturbation of the regulatory network. 

A high level of parallelism was observed with mutations identified in identical genes in most 
evolved clones. They affected the transcriptional regulatory region of genes involved in the 
transport of the sugar present in the evolution environment. These mutations increased the 
transcription of these genes, thereby resulting in better sugar transport, which allowed restoration 
of the fitness defects (see Deliverable 1.5). Therefore, perturbed regulatory networks evolved 
toward phenotypic improvement by changing the regulation of target genes through transcriptional 
rewiring of their expression. 

Resources committed 

Partner 2 (University Grenoble Alpes): 

• Hindré, Thomas: assistant professor 
• Lamrabet, Otmane: post-doctoral fellow 
• Schneider, Dominique: Professor 

Partner 5 (CSIC): 

• Carrasco, José L.: post-doctoral fellow 
• Cervera, H.: PhD student 
• De la Iglesia, Francisca: lab. engineer 
• Elena, Santiago F.: Professor 
• Tromas, Nicolas: PhD student/post-doctoral fellow 
• Willemsen, Anouk: PhD student 
• Zwart, Mark P.: post-doctoral fellow 

2.2.4. Contribution 3 (Task 1.3): Phenotypic innovation at the population and 
regulatory network levels 

Section 1: Phenotypic innovation at the population level in the TEV experimental model 

The phenotype of a virus is a complex trait that can be defined in several ways. From a viro-centric 
perspective, the most relevant phenotype is viral fitness. Viral fitness itself is also a quite complex 
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trait, with many components. To better evaluate viral fitness, we have quantified two different 
components: infectivity, which is a proxy to between-host fitness and measures the efficiency of 
initiating a new infection, and viral load which is directly related to the efficiency replicating and 
accumulation within cells and moving from cell to cell and from the inoculation site to distal tissues. 

We first sought to evaluate a first phenotypic innovation, namely, the ability to infect and replicate 
in novel hosts. We evaluated the fraction of all possible mutations that may confer TEV the ability 
to infect a set of new hosts. To do so, we had revisited the fitness and infectivity of a collection of 
single-nucleotide substitution mutants across a panel of susceptible hosts, including N. tabacum. 
N. benthamiana, D. stramonium, Capsicum annuum, Solanum lycopersicum, Helianthus annuus, 
Gomphrena globosa, and Spinacia oleracea. As a way to assess the extent of phenotypic 
innovation for infectivity, we counted the number of genotypes that had infectivity larger than the 
wildtype TEV on each host species. A highly significant positive correlation was observed between 
this frequency and the genetic distance between the reservoir host and the alternative host. Then 
we measured viral load. A significantly negative correlation between virus accumulation and the 
genetic distance between the reservoir host and the alternative host was observed. Together, 
these results suggest that genetic diversity exists within viral populations that allow for phenotypic 
innovation. Details of this study are provided in deliverable D1.4. Next, we sought to determine the 
effect that long-term evolution in the reservoir host (N. tabacum) and one of the above alternative 
hosts (C. annuum) had in phenotypic innovation and in the underlying dynamics of allele 
substitution. Parallel independent evolution lineages were evolved in both hosts, their fitness 
evaluated at the end of the experimental evolution phase and the genetic composition of each 
lineage at each passage and at different plant tissues evaluated by Illumina NGS. In full agreement 
with the above results, we found a large extent of phenotypic innovation in the novel host 
(measured as fitness increases and new symptoms). At the molecular level, new beneficial alleles 
swap and got sequentially fixed in the novel host as predicted by the clonal interference model. By 
contrast, lineages evolved in the reservoir host showed no phenotypic innovation and alleles 
changed in frequency along time as expected for a mutation-drift model. These results have been 
published in (Cuevas et al., 2015). 

Phenotypic innovation in terms of expansion of TEV host range was also explored in the context of 
fitness landscapes. We evaluated the ruggedness and other topological properties of a local fitness 
landscape involving the five mutations responsible for adaptation of TEV to the novel host 
Arabidopsis thaliana both in the novel and ancestral hosts and found that both landscapes were 
macroscopically similar (i.e., both were rugged and contained several holes due to lethal 
mutations) but differed in the details (i.e., antagonistic pleiotropic effects). These results have been 
published in (Lalić and Elena 2015; Cervera et al., 2016b), and reviewed in (Elena, 2016b). 

Second, we had evaluated phenotypic innovation as a change in the way evolving TEV populations 
interact with the transcriptome of their hosts. In this case, “phenotype” was considered as the 
whole set of mRNAs that exist at a given time point in an infected plant. To tackle this issue, 
lineages of TEV adapted to five different ecotypes of the experimental host A. thaliana were used 
to inoculate each one of the ecotypes. The five ecotypes differed in their susceptibility to infection 
with the ancestral TEV strain (Hillung et al., 2014; 2015). We found that: (i) the extent of 
phenotypic innovation (that is, the magnitude of the difference in transcriptomic profiles between 
plants infected with the ancestral and evolved viral isolates) was dependent on the local host 
genotype, with lineages evolved in a common genotype showing more similarities than genotypes 
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adapted to other host ecotypes. (ii) Some host genes were altered by all viral lineages in all 
genotypes, whereas others where both lineage-specific and/or host ecotype-specific. The former 
should be considered as universal responses to TEV infection whereas the latter shall be 
considered as specific of each particular plant ecotype-virus genotype interaction. (iii) Phenotypic 
innovation comes with a cost: the more divergent a phenotype from the ancestral virus, the lower 
the fitness of the virus in the ancestral host. (iv) Generalist viruses, that is, those able of 
successfully infecting a broader range of host genotypes (more phenotypically diverse) altered the 
expression of similar sets of genes across all hosts tested; by contrast, specialist viruses (less 
phenotypically diverse) differed in the set of genes that were altered on each potential host tested. 
More details are provided in deliverable D1.6 and in the resulting publication by Hillung et al. 
(2016). 

Section 2: Phenotypic innovation at the regulatory network level in the E. coli experimental 
model 

We investigated the relationships between the structure of global regulatory networks and the 
bacterial ability to produce phenotypic innovation (see deliverable D1.6). In particular, clones with 
different regulatory network structures were propagated under conditions known to promote 
adaptive diversification and investigated for their ability to produce co-existing lineages of bacterial 
cells with differential phenotypic abilities. In addition, we investigated the involvement of global 
regulatory networks in the physiology and mechanism of the adaptive diversification event that was 
previously detected in the population Ara–2 of the LTEE (Plucain et al., 2014). 

We propagated two types of strains in conditions known to promote adaptive diversification, i.e. the 
presence of two carbon sources (see deliverable D1.6). One set of strains harbored a typical 
regulatory network structure for E. coli and the other set was perturbed by deletion of crp, one of 
the central hubs of bacterial regulatory networks. While emergence of two different lineages of 
bacterial cells, specialized for the consumption of each of the two carbon sources, was readily 
detected for the first set of strains, no such polymorphism emerged when the regulatory network 
was perturbed. 

In population Ara-2 of the LTEE, a stable and dynamic polymorphism was established and two 
lineages called S and L co-exist since more than 50,000 generations. Two lines of evidence 
demonstrated that the structure of regulatory networks was involved in the emergence and 
maintenance of this phenotypic innovation (see deliverable D1.6). First, perturbing the regulatory 
networks by deleting the crp gene in either of the two lineages completely abolished the ability of S 
and L clones to co-exist. Second, a combination of modeling and experimental approaches allowed 
us to characterize the physiological and molecular mechanisms of the emergence of the 
polymorphism. The L clones produced a new ecological niche, by secreting acetate, which 
provided the opportunity for the emergence of the S lineage that exploited this new niche. 
Moreover, each lineage became fitter and fitter in its own ecological niche over evolutionary time. 
Therefore, this combination of niche construction and character displacement was at the origin of 
this polymorphism. These results were recently published in (Großkopf et al., 2016). We further 
found the mutation that allowed the S clones to exploit the new ecological niche, namely to 
consume acetate. This mutation affected the arcA gene encoding one of the biggest global 
regulators of E. coli. We further showed that this mutation rewired the regulatory network in the S 
lineage, providing it with the opportunity to growth efficiently with acetate as a carbon source. 
These results are the subject of a manuscript that will soon be submitted (Consuegra et al., 2016). 
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Resources committed 

Partner 2 (University Grenoble Alpes): 

• Consuegra, Jessika: PhD student 
• Gaffé, Joël: assistant professor 
• Hindré, Thomas: assistant professor 
• Lamrabet, Otmane: post-doctoral fellow 
• Schneider, Dominique: Professor 

Partner 5 (CSIC): 

• Carrasco, José L.: post-doctoral fellow 
• Cervera, H.: PhD student 
• Cuevas, José M.: post-doctoral fellow 
• De la Iglesia, Francisca: lab. engineer 
• Elena, Santiago F.: Professor 
• Hillung, Julia: PhD student 
• Lalić, Jasna: PhD student/post-doctoral fellow 
• Willemsen, Anouk: PhD student 

2.2.5. Conclusion 

The experiments performed in WP1 led us to identify some “EvoEvo strategies” that help 
organisms to improve their robustness, evolvability and innovative potential. As anticipated, these 
strategies are different in the two model organisms studied – a virus and a bacteria – owing to the 
“simplicity” of the former and to the “complexity” of the latter. Indeed, in the former EvoEvo 
strategies are based on the population and genome levels while in the latter, they are mainly – but 
not only – based on the cellular networks. 

EvoEvo strategies for the evolution of robustness: 

• Robustness in TEV populations: 
o A positive dependence of mutational robustness on effective population size has 

been observed in evolving populations of TEV. 
o The effect of mutation rate on the evolution of mutational robustness depends on 

effective population size: it is positive in small populations but negative in large 
ones. 

• Robustness of regulatory networks in E. coli: 
o Evolution strongly selected a particular structure of the regulatory network. 

Disturbing this structure resulted in lower robustness of the evolved clones 
specifically in the evolution environment. 

o The physiological effect in the evolution environment of perturbing the crp network 
was larger in the evolved clones than in their ancestor. We identified the mutations 
responsible for this larger effect and showed that they affected the level of DNA 
supercoiling. A link between catabolic repression and DNA topology is therefore 
responsible for maintaining robustness at the level of regulatory networks in E. coli. 

o The level of DNA topology controls the balance between the robustness and 
evolvability of regulatory networks during long-term evolution in bacterial cells. 
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• Robustness at the genome level in TEV and E. coli: 
o Duplicating a gene in a viral RNA genome does not contribute to increase its 

mutational robustness. The cost associated with replicating an additional piece of 
RNA does not compensate for the possible beneficial effects in buffering the effect 
of deleterious mutations. 

o Addition of the alkB domain that repairs alkylation on RNA molecules was not 
beneficial for TEV in terms of increasing its mutational robustness, suggesting that 
virus’ robustness is a population collective process rather than individual-based. 

o Large chromosomal rearrangements have been substituted during evolution of the 
12 populations of the LTEE, heavily restructuring the chromosome but without 
dramatic effect on robustness. They even in some cases increased the fitness of the 
evolved bacterial clones. 

o RNA chaperones, like protein chaperones, can have a buffering effect on 
deleterious mutations, thereby increasing the robustness of bacterial cells. 

o We identified the shifting balance of forces that govern genome evolution in 
bacterial populations adapting to a new environment with beneficial mutations 
declining as fitness rises and neutral mutations accumulating at a constant rate. 

EvoEvo strategies for the evolution of evolvability: 

• Evolvability in TEV populations: 
o Viruses with genomic duplications readily remove the second copy, returning to the 

wildtype genome architecture. Genetic redundancy does not improve the 
evolvability of RNA virus by relaxing selective constraints operating on 
multifunctional proteins. 

o If a viral gene is transferred into the host genome, this relaxes selection on the viral 
copy and viruses with deletions are favored, resulting in a virus that lacks this gene. 

o Genomes with alternative gene orders are viable. They quickly evolve and improve 
in absolute fitness (i.e., virus accumulation) and virulence. However, they are still 
inferior competitors than the wildtype TEV. 

o Adding a gene with a short-term benefit results in its evolutionary retention. The 
case of a successful increase in genome complexity was the addition of a second 
suppressor or RNA silencing, the 2b protein from CMV, that operates at a different 
level on the silencing pathway than the original HC-Pro protein. 

o Rates of adaptive evolution vary among genome architectures, with the wildtype 
virus showing an intermediate value. No correlation between TEV robustness and 
evolvability has been observed. 

o When considering the evolution of genome architecture, host species jumps might 
play a very important role, by allowing evolutionary intermediates to be competitive. 

o The reproducibility of adaptive evolution is minimal in TEV due to the ruggedness of 
the adaptive landscape. Only a fraction of populations starting at one mutational 
step away from the local optimum reached it, fixing the exact same set of mutations, 
while populations starting farther away from the local optimum end up in distant 
regions of the landscape, fixing a new set of mutations. 

• Evolvability of regulatory networks in E. coli: 
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o Regulatory networks are highly evolvable in bacteria. Deletion of a central hub of 
regulatory networks resulted in strong growth alteration that was reversed after only 
100 generations of evolution. 

o The restoration occurred by increasing the transcription of target genes involved in 
sugar uptake. 

o Rewiring of perturbed regulatory networks involves additional regulatory changes in 
bacteria that influence and restore the altered phenotype. 

EvoEvo strategies for the phenotypic innovation: 

• Phenotypic innovation at the population level in TEV: 
o Phenotypic innovation in terms of accessibility to novel hosts has been shown in 

TEV. Genetic variability exists that allow the virus to infect and successfully replicate 
in a panel of novel hosts. 

o The extent of TEV phenotypic innovation depends on the genetic relatedness 
between host species and the natural reservoir. In terms of infectivity, the fraction of 
possible beneficial mutations increases with genetic distance. By contrast, in terms 
of virus accumulation, the fraction of beneficial mutations decreases with genetic 
distance among host species. 

o Genes and functional categories differentially expressed by plants infected with 
locally-adapted TEV isolates have been identified, showing heterogeneous 
responses among ecotypes, although significant parallelism existed among lineages 
evolved in the same ecotype. Adaptation to novel host genotypes results in 
phenotypic innovations, which are host-specific. 

o Plant resistance genes are not the only drivers of viral adaptation, as functional 
groups related to secondary metabolism and responses to abiotic stress and 
senescence were also pervasively over-represented in infected plants. 

o The nature of transcriptomic perturbations varies among generalist and specialist 
viral lineages. Whilst the generalist induced very similar perturbations in the 
transcriptomes of the different ecotypes, the perturbations induced by the specialist 
were divergent. Plant defense mechanisms were activated when the infecting virus 
was specialist but they were down-regulated when infecting with generalist. 

• Phenotypic innovation in E. coli regulation network: 
o Regulatory networks are essential for phenotypic innovation in bacteria. Divergence 

of bacterial lineages, which is an essential trait both in evolutionary biology and in 
medicine, relies on the structure of regulatory networks. 

o The structure of regulatory networks is an essential trait in bacterial cells. As was 
shown since decades, it allows a fast answer to environmental changes by 
transiently modifying the global expression profiles. We showed here, in the 
framework of EvoEvo, that the structure of regulatory networks are also essential for 
the establishment of stable adaptive diversification events in bacteria, which is 
considered as the first step of speciation. 
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2.3. Workpackage 2: Development of an integrated modelling platform 

2.3.1. Introduction 

One of the central objectives of the EvoEvo project was to enable simulation of “evolution of 
evolution” in a computational framework. Computational models have been used to study evolution 
since the beginning of the 1990s (Adami, 2006). However, since then, most computational models 
used a partial representation of the genotype-to-phenotype mapping, generally in a fixed, 
predefined fitness landscape. By simulating the evolution of some particular organisation level (the 
genome, the genetic regulation network, the metabolic network...), different authors have studied 
evolution of robustness, evolvability or variability of these specific levels (Wilke et al., 2001; Knibbe 
et al., 2006; Crombach and Hogeweg, 2008; Cuypers and Hogeweg, 2012). Yet, “EvoEvo” is an 
integrative concept exactly as fitness is. Indeed fitness is the result of the interaction of all the 
organisation levels of the organism, including its interactions with its environment. Similarly, the 
robustness/evolvability/variability of the phenotype is the result of the interaction of 
robustness/evolvability/variability at all the organisation levels of the organism (including its 
interactions with its environment!). Furthermore, these properties are not independent and they 
may interact in a cooperative or competitive way (e.g., evolving chaperone proteins reduces the 
phenotypic variability, thus increasing the robustness). That is why, in the context of the EvoEvo 
project, we developed an integrated computational model of EvoEvo, including the main 
organisation levels of the (evolvable) genotype-to-phenotype map (genome, transcription network, 
metabolic network, phenotype, fitness, population). 

The development of such an integrated modelling platform was the main objective of WP2. 
However, being aware that the development of such a model was a difficult and risky objective, this 
objective was divided in three subtasks to sequentially incorporate more and more levels in the 
model. So WP2 was divided into tasks 2.1 (integration of sequence and network levels), 2.2 
(modelling regulation and metabolism), 2.3 (modelling environment, population and trophic 
network) and 2.4 (development of the integrated model). The objective was to reduce the risk 
inherent in task 2.4 as well as giving an alternative plan in case of failure of task 2.4. Indeed, the 
development of this “model stack” was shown to be very hard, and WP2 ran slow in the first 
months of the project. However, it also proved efficient, as a global strategy: the time devoted to 
tasks 2.1, 2.2 and 2.3 enabled a speedy accomplishment of task 2.4 (which was completed on 
time) and the integrated model was released early enough and was efficient enough for WP3 to 
use it to model the LTEE (see section 2.3). 

Yet, an unexpected difficulty arose: a complex model like the one we envisioned necessarily 
incorporates a large set of parameters, and complete exploration of the parameter space proved to 
be impossible. We overcame this difficulty by two means (1) a minimal parameter exploration to 
identify the effect of the main parameters on the evolutionary dynamics, and (2) a vast review of 
the literature in order to fix the order of magnitude of the model parameters (the exact values being 
fixed by the evolutionary process). 
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Figure 3: Position of WP2 in the biology-to-application scheme of EvoEvo 

The rest of this section is organized as follow. Since we were successful in the development of the 
integrated model, the partial models developed in tasks 2.1, 2.2 and 2.3 were not used in the 
computational experiments (which used only the integrated model). We thus group the description 
of these models in a same contribution (section 2.3.2, Contribution 1: Development of the “model 
stack”). Then, we detail the development of the integrated model (section 2.3.3, Contribution 2: 
Development of “Evo2Sim”). Finally, we discuss the choice of the model parameters (section 2.3.4, 
Contribution 3: Parameters choice for Evo2Sim). 

2.3.2. Contribution 1: Development of the “model stack” (tasks 2.1, 2.2 and 2.3) 

Our initial objective was to develop the integrated model in four steps to test and validate all the 
submodels before integrating them all in “Evo2Sim” (the name was chosen later). We thus released 
three submodels focusing on different aspects of evolution, namely biochemistry, networks and 
(minimal) ecology: 

• Submodel 1: Integrating sequences and metabolisms (task 2.1). The objective of this 
submodel was to choose and implement a coarse grained model of the genome encoding 
for a simplified metabolic network. At the genomic level, we wanted to combine some 
properties of the Aevol model developed in Lyon by INRIA and of the “Pearls on a String” 
(aka PoaS) formalism used in Utrecht. This was achieved by organizing the genome as a 
circular string of pearls, and allowing for “non-coding” pearls. One of our objectives was to 
allow evolution to play with the amount of non-coding sequences, since we suspected a 
strong effect of EvoEvo. At the metabolism level, our objective was again to gather 
properties of PoaS (the encoding of a metabolic network) and of Aevol (unlimited 
complexity of the phenotype). This was achieved by using an artificial chemistry in which 
metabolites are identified by an integer tag (infinite metabolite universe) and the “proteins” 
encoded on the genome encode for enzymes that transform metabolites (i.e., integers) into 
one another. This submodel was implemented and tested, and released on the project 
website in December 2014 (deliverable D2.2). 

• Submodel 2: population model (task 2.2). In submodel 1 all individuals behave 
independently and the only interaction between them is their fitness value. Submodel 2 
adds the possibility for the individuals to exchange metabolites through diffusion in the 
environment.  Such inter-individual interaction is proposed by Banzhaf et al. (2016) as a 
prerequisite for open-endedness, particularly when an explicit fitness criterion is used 
(which is the case here). To this aim we added basic but important properties to the model: 
pumps (enabling individuals to actively pump-in or pump-out metabolites), metabolic 
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diffusion and degradation, and cell membrane permeability. This submodel was 
implemented and tested, and released on the project website in May 2015 (deliverable 
D2.4). 

• Submodel 3: modelling regulation and metabolism (task 2.3). While submodel 1 
includes only a metabolic network, submodel 3 adds a genetic regulation network that 
controls the transcription rate of the enzymes (thus controlling the activity of the metabolic 
network). It is based on a more precise description of the genome that, in addition to non-
coding and coding (enzymes) pearls, also contains promoter pearls, transcription-factor-
coding pearls and binding sites. This enables the regulation network to evolve both in cis 
and in trans (as real regulation networks). The main difficulty of this submodel is the dual 
interaction between metabolic and regulation networks. While the regulation network 
naturally influences the metabolic network through modification of transcription rates (hence 
of enzymes concentrations), it also needs to sense the metabolic activity in order to react to 
it. We model this through the possibility of the transcription factors binding to coenzymes 
(like in the well-known Lac-operon). Coenzymes can change the binding property of 
transcription factors, hence enabling the regulation network to behave differently depending 
on the metabolic context. This submodel was implemented and tested, and released on the 
project website in May 2015 (deliverable D2.6) 

The development and test of the “model stack” was fruitful on many points. First, it showed that all 
modelling choices were reasonable, both in terms of results (i.e., efficient individuals evolved in all 
models – which fulfilled milestones MS2, MS4 and MS5) and in terms of computability (i.e., all 
these models were runnable on classical computers in a reasonable time). As such, it efficiently 
paved the way to the integrated model. However, it also revealed an important property of the 
submodels: when individuals were not interacting (i.e., in submodels 1 and 3), the evolutionary 
dynamic was considerably simplified. On the one hand, this was a confirmation of the theoretical 
discussions exposed in (Banzhaf et al., 2016). On the other hand, this result quickly led us to stop 
using the submodels and to concentrate on the development and usage of the integrated model. 

Resources committed 

All submodels were developed by Charles Rocabert, Guillaume Beslon and Carole Knibbe (INRIA). 
All members of the consortium were involved in the discussions on modelling choices, particularly 
Paulien Hogeweg, Bram van Dijk, Thomas Cuypers and Sandro Colizzi (Utrecht University), 
Otmane Lamrabet and Dominique Schneider (Université Grenoble-Alpes) and Susan Stepney 
(University of York). 

2.3.3. Contribution 2: Development of “Evo2Sim” 

Evo2Sim is an integrated model that gathers all the submodels presented previously. It is 
extensively described in deliverable D2.7 (models specification) and D2.8 (model code – released 
on the project website in May 2015) as well as in (Rocabert et al., 2015) and (Rocabert et al., 
2016b). Figure 4 recalls the main properties of the model. 

Since all submodels had been previously tested and validated, the conception of the integrated 
model was not a major issue. However, its implementation was much more difficult than 
anticipated, for at least two interconnected reasons: 
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• The numerical solving of metabolic equations quickly appeared to be very difficult owing to 
the stiffness of the equations. The tuning of the ODE solver used in the model (GSL) had to 
be improved to take into account the specificities of the model (typically, the stiffness of the 
metabolic equations could not be anticipated since it is likely to change at every mutation). 

• The computational load of the integrated model appeared to be much larger than 
anticipated due to three independent factors: (1) the complexity of the model itself (i.e., the 
number of interacting elements). This was considered as a major risk in the project. 
However, two other factors quickly worsened the situation. (2) The stiffness of the 
metabolic equations led us to use highly demanding solving strategies and (3) although the 
model showed interesting evolutionary properties, it also showed that evolution within the 
model is rather slow (mainly due to the fact that individuals replicate slowly). Hence, 
observing interesting dynamics often needed some 100,000 simulation-steps or even 
500,000 simulation-steps – see e.g., (Rocabert et al., 2016b). 

To overcome this difficulty, we strongly optimized the simulator code and used parallel libraries to 
execute the model on multi-core computers. Compared to the initial versions of the model, we 
obtained a 10x faster implementation that made it possible to use the model in practice (which was 
not fully guaranteed at the model release). 

From an algorithmic point of view, in silico experimental evolution is very similar to evolutionary 
computation. However, a strong difference is that the latter is mainly concerned by the last 
generation of the evolutionary process (i.e., the best organism evolved so far) while the former is 
mainly concerned by the evolutionary process itself. That is why a model dedicated to in silico 
experimental evolution must include tools to a posteriori analyse the evolutionary dynamics. In 
Evo2Sim the main analysis tool is a model viewer that enables the user to follow all the properties 
of the system along the evolution (concentration of metabolites in the environment, population n-
evolution, fixed mutation rates, phylogenetic structure… see Figure 5). 
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Figure 4: Presentation of Evo2Sim model. The genotype-to-phenotype mapping, as well as the 
population and environment, are represented here. (A) Description of the genotype-to-
phenotype mapping. Organisms own a coarse-grained genome made of units. This genome 
is a circular single-strand sequence, with a unique reading frame. Non coding (NC) units are 
not functional (A.1). The arrangement of the units on the sequence defines functional regions, 
where a promoter (P, blue cross) controls the expression of enzyme coding units (E, red 
circles) or transcription factor coding units (TF, purple squares), thereby allowing for operons 
(here, one E and one TF). When coding units are expressed (A.2), they contribute to the 
genetic regulatory network (for TFs) and the metabolic network (for Es). Depending on their 
attributes, transcription factors bind on binding sites. (A.3) If they bind on the enhancer 
sequence (binding sites flanking the promoter upstream), the promoter activity is up-regulated. 
If they bind on the operator sequence (binding sites flanking the promoter downstream), the 
promoter activity is down-regulated. (A.4) Metabolites can bind on a transcription factor as co-
enzymes, and activate or inhibit it, depending on transcription factor attributes. Enzymes 
perform metabolic reactions in the cytoplasm (A.5), or pump metabolites in or out (A.6). The 
score of an organism is computed from its “essential metabolites'” (usually the score is the 
sum of essential metabolite concentrations). Lethal toxicity thresholds are applied to each 
metabolic concentration and forbid organisms to accumulate resources. (B) Description of 
the population and environment levels. Organisms are placed on a 2D toroidal grid, and 
compete for resources and space. When an organism dies, it leaves its grid cell empty and 
organisms in the Moore neighborhood (if any) compete to divide in available space. The 
competition is based on scores, a minimal threshold being applied on scores to forbid worst 
organisms to divide. At division, daughters share cytoplasm content (enzymes and 
metabolites). At death, metabolites from the cytoplasm are released in the local environment, 
and diffuse on the grid (B.1). On the largest scale, the population evolves on the environment 
by up-taking, transforming and releasing metabolites. Metabolites then diffuse and are 
degraded. This strong interaction between the population and the environment allows for the 
evolution of complex ecological situations, depending on environmental properties (B.2). 
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Figure 5: Evo2Sim viewer. Different panels enable the user to observe the evolution in action 
at the individual, population and phylogenetic levels. Top: best lineage property. Bottom: 
phylogenetic tree. Here the population is structured in two groups co-evolving independently 
for more than 30,000 generations (~400,000 time steps). 

Resources committed 

Evo2Sim was developed by Charles Rocabert, Guillaume Beslon and Carole Knibbe (INRIA). The 
fine tuning of the ODE solver benefitted from Samuel Bernard and the code optimization and code 
parallelization was done by Charles Rocabert and Jonathan Rouzaud-Cornabas. 



EvoEvo Project 

 

Deliverable 6.8 
FP7-ICT FET Proactive EVLIT program Final report 
Project reference: 610427 Version 2.4 

 

   Page 24 of 77 

2.3.4. Contribution 3: Parameters choice for Evo2Sim 

Individual-based models usually contain many inter-dependent parameters. This is the case with 
Evo2Sim. Since we want to be able to compare the evolutionary dynamics of Evo2Sim with what is 
observed in vivo, we need to tune the model parameters such that the dynamic regime of our 
“cells” is comparable with the dynamic regime of real cells (e.g., the life-time of the cell, the amount 
of protein produced – or inherited, the enzymatic constants… must be in the same order of 
magnitude). More importantly, since the parameters are all interdependent, the correct orders of 
magnitude for all the parameters must be chosen, in order to avoid soundless behaviours e.g., the 
metabolic reactions must be fast enough to enable the cell to react to environmental changes, but 
too fast reactions must be avoided since they would not be possible in practice. In particular, we 
have to carefully choose all time-related parameters such that the cells are able to react to 
changes in their environments (meaning that they are able to sense the changes, modify the 
enzyme production accordingly and stabilize on the new behaviour in a reasonable time). 

Following the development of Evo2Sim and the first experiments, an important review of the 
literature was conducted in order to identify the correct dynamic regimes and the orders of 
magnitude of the most important parameters (note that only the orders of magnitude are important 
here since the exact values are fixed by the evolutionary process). 

Time unit: 

At the molecular level, we use a 1 minute time unit (i.e., the ODE equations are updated each 
minute). The individual time unit is 100 minutes (i.e., the population dynamics is updated each 
100 minutes depending on the current molecular state of the cells). Given this time-scale, we fix 
the death rate at 0.07 (i.e., a cell lives in mean 1400 minutes, ~24 hours). 

Protein degradation rate: 

In a cell, the half-life of the molecular components (proteins) varies between 5 and 70 hours 
depending on the proteins (the proteins with smallest half-life generally being mutant or badly 
folded ones). In the model the protein half-life is fixed by the degradation rate that is a non-
evolvable parameter. We use a degradation rate of 0.0005 per protein per minute, corresponding 
to a protein half-life of approximately 24 hours (1440 minutes since ln(2)/1440 ≅	  0.0005). 

Concentration units: 

In the model we use arbitrary concentration units (denoted “Z” later) but all constants must be 
scaled to the production and degradation rates and the size of the cell. Since we consider that we 
model bacterial cells, the cell volume and the grid patch volume are fixed to 4 µm3 (corresponding 
to the estimated volume of an E. coli cell1). We choose to use the production rate as a reference-
rate so the maximum production rate is 1 (minimum production rate being 0). Given the 
degradation rate, the maximum concentration at equilibrium is 1/0.0005 = 2000 AU. Since 
enzymatic concentrations in E. coli vary between 5 and 500 nM (Hugues Berry, personal 
communication), the concentration unit (Z) is 10-10 M and the protein concentration varies between 

                                                
1 For a global reference on the biological values, see: http://bionumbers.hms.harvard.edu/ 
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0 .. 2000 Z (0 .. 200 M). Below 1 Z, enzymes are considered to have disappeared from the cell 
(indeed, given a Z value and the cell volume, Z < 1 corresponds to less than 1 molecule per cell2). 

In bacteria intracellular concentration of metabolites varies between 10-7 and 10-2 M (i.e., 103 to 
108 Z). Typical growing medium used to cultivate E. coli contain between 1 and 20 g/l of glucose 
(the minimal concentration under which E. coli does not grow being 4 to 5 g/l). Given Z this 
corresponds to a metabolite concentration of 5x107 to 109 Z in the medium (glucose molecular 
weight: ~180 g/mol). Since we intend to model the LTEE where glucose is the only carbon source 
(i.e., in the model a single metabolite is provided in the external medium at regular time steps), we 
introduce a carbon source (i.e., a metabolite which tag is not a prime number) at a concentration 
2x108 Z each ~14 time steps (i.e., each 24h). 

Range of Km and kcat values: 

Km and kcat are the two parameters of the Michaelis-Menten enzymatic equation used to model the 
metabolic network. They are enzyme-specific (thus being coded in the genome) and they are free 
to evolve. One of the central difficulties is to restrict their evolution to a chemically-sounded-domain 
given the concentration and time units used in the model. In natural enzymes, the observed values 
are (Bar-Even et al., 2011): 

• Km: between 10-7 and 10-1 M (i.e., 103 to 109 Z), 
• kcat: between 6 and 60000 minute-1 (median value: 600 minute-1) 

Given the range of variation of both values, they are encoded in logarithmic scale, resulting in a 
range of 3 to 9 for Km and 0.8 to 4.6 for kcat (both in log10). However, these values raise an 
unanticipated difficulty: independent mutations of Km and kcat could result in a ratio of kcat/Km 
varying between 6x10-9 and 6x107 min/Z which is a nonsense both mathematically (ODEs become 
strongly stiffened!) and biologically (in natural enzymes the kcat/Km ratio would vary between 6x10-6 

and 6x10-2 min/Z). Indeed, in natural enzymes there is a tradeoff between Km and kcat values (Bar-
Even et al., 2011). We thus decided to parameterize the Michaelis-Menten reaction by two 
parameters: kcat and the kcat/Km ratio (indirectly specifying the Km value).  

Minimum score: 

In Evo2Sim the fitness of the cell is given by a score that is the amount of essential metabolites 
(metabolites whose tag is a prime number) in its cytoplasm (being these essential metabolites 
produced or inherited). The parameter MINIMUM_SCORE indicates the minimal score below 
which a cell cannot replicate. Given the concentration unit and the size of the cell, the minimum 
score is fixed at 4, which is the threshold below which less than one molecule of any essential 
metabolite is present in the cytoplasm. 

                                                
2 one molecule per cell corresponds to 1.6x10-24

 mol. Given the cell volume (4 µm3), this gives a 
concentration of 4x10-10

 M = 4 Z. 
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(C) Molecular dynamic

 

Figure 6: A simple model of operon regulation in Evo2Sim. The genome contains two 
independent operons each producing an essential metabolite (the prime numbers 5 and 3) 
from two different carbon sources (respectively 20 and 22). (A) Regulation network: each 
operon self-inhibit itself unless it’s primary metabolite is present in the environment. This 
ensures a minimal energy consumption in the absence of the energy source. (B) metabolic 
network. The metabolic network is rather simple: it contains two metabolic pathways, each 
dedicated to the production of an essential metabolite and each regulated by an operon. (C) 
dynamic of the metabolic network. The six graphs display the behaviour of a single cell in 
time (t = 0 corresponding to the cell birth). Each time one of the two carbon sources (20 ou 22) 
is present in the environment, the corresponding operon produced the corresponding pump 
and enzyme (“produced enzymes” panel). The cytoplasm then contains the carbon source 
(green curve on the “internal metabolites” panel) that is transformed into the corresponding 
essential metabolite (red curve on the same panel). Note the energy panel where the 
triggering of the operon is clearly visible (small energy drop corresponding to the operon 
transcription before the enzymes produce energy by degrading the carbon source). 
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Results: 

Using this parameter setting, we tested a simple model of operon regulation (Figure 6) and 
immediately obtained a coherent (and viable) cell behaviour and evolution. Moreover, comparative 
evolutionary experiments between random parameters and the ones chosen here showed that 
evolution is more efficient and less unstable with the new setting. Even though this has to be 
confirmed experimentally, we hypothesise that this is mainly due to the new way to mutate the 
Michaelis-Menten parameters. 

Resources committed 

All bibliographic research was done by Carole Knibbe with the help of Hugues Berry. The Operon 
model was designed by Guillaume Beslon and Charles Rocabert, and tested by Charles Rocabert. 

2.3.5. Conclusion 

The development of the integrated model was more difficult than anticipated, as noticed by the 
project monitors during the first project review. However, we eventually developed a very promising 
model, finely tuned and available for conducting in silico experiments. In particular, it was used to 
replicate the LTEE evolutionary conditions and proved to replicate some of the results of the LTEE, 
thus facilitating the interpretation of this experiment (see (Rocabert et al., 2016a,b) and section 
2.4.5). Although WP2 ended at M18, the design of WP3 Evo2Sim experiments triggered (and is still 
triggering) model evolution and optimization as well as new analysis and visualization tools. Thus 
Evo2Sim was continually improved all along and the package distributed on the project website has 
been updated accordingly. 

2.4. Workpackage 3: In silico experimental study of EvoEvo 

2.4.1. Introduction 

In WP3 we used the models developed in WP2 and the models developed previously by INRIA 
and UU to study the emergence of variability (plasticity) robustness, evolvability, and population 
level open-endedness in in silico evolutionary experiments. This enabled us to better understand 
and characterize the different “EvoEvo strategies” observed in vivo – or in some situations only in 
silico – and to understand how they could be simulated to be transferred to WP4 and WP5 (Figure 
7). A detailed discussion of the most interesting results is given in Deliverables D3.1, D3.2, D3.3 
and D3.4, following the narrative of the obtained insights. As discussed in these reports, one of the 
important insights obtained was the ways in which the crucial properties of EvoEvo are entangled. 
As stated in the conclusion of D3.2: “Robustness and Evolvability are tightly linked: Robustness is 
an evolved property, one of the mechanisms for robustness is evolvability and one of the 
consequences of robustness is evolvability”. Moreover the mechanisms inducing variability, as well 
as the resulting variability in the population, are tightly linked to both the evolution of robustness 
and evolvability and are the result of these properties in the evolved population. 
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Figure 7: Position of WP3 in the biology-to-application scheme of EvoEvo 

Despite this entanglement, in this section we follow the original proposal by summarizing the 
results on variability, robustness, evolvability and open-endedness separately, looking at each at 
the genomic, the phenotypic, the population and the ecosystem level. 

2.4.2. Task 3.1: Evolution of variability 

Variability at the genome level 

Variability at the level of the genome is mediated by the genetic operators. We have elucidated the 
important role for genetic operators other than point mutations in evolution.  In particular, large and 
small duplications and deletion, i.e., genetic operators which modify genome size, are important 
mechanisms for EvoEvo. During the evolution of wild-types, genome size typically evolves in a 
predictable manner: initial genome expansion followed by streamlining (Cuypers and Hogeweg, 
2012; 2014; Fischer et al., 2014; Batut et al., 2016a,b). “Typically” here means that it occurs 
especially in those runs which attain high fitness, and when there is no high penalty on genome 
size. Moreover, mutation rate should be proportional to genome size, as is the case in nature, but 
is not common practice in evolutionary computation. Evolution of genome size automatically tunes 
not only overall mutation rates per genome, but also the ratio of variability generated by different 
mutational operators, because this scales linearly for point mutations but super-linearly for the 
other operators in which not only the frequency but also the length scales with genome size. 

Variability at the phenotype level 

An arbitrary small amount of difference (e.g., one point mutation) at the genome level can cause an 
arbitrary large amount of change at the phenotypic level, and an arbitrary large amount of 
genotypic difference can conserve the same phenotype. The mapping of genotype change 
(mutations) to phenotype change (GP map) is subject to evolution, and is in fact a primary 
mechanism of EvoEvo. We further discuss this below in terms of evolution of robustness and 
evolution of evolvability. 

Moreover, given one particular genome, phenotypic variability (plasticity) can exist even simply by 
noise. Interestingly noise in the GP map enhances evolution of robustness and evolvability in 
developmental systems (Ten Tusscher and Hogeweg, 2011, Vroomans et al., 2016). Phenotypic 
plasticity can evolve to increase functionality in constant environments, as we have shown in the 
case of alternative folding in RNA-based protocells (de Boer and Hogeweg, 2014), or to cope with 
variable environments, as we have shown for gene regulatory networks evolved in highly variable 
ecosystems, where an evolved stringent response allowed survival during periods of low resource 
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availability (van Dijk et al., 2016a,b). When these evolved wild-types are brought into the 
experimental conditions of the LTEE, they tune by evolution this stringent response to the period of 
environmental change, a way which appears similar to what is seen in the LTEE experiments. 

Variability at the population level 

Maintaining sufficient population level variability is a prerequisite for effective evolution. It is a major 
concern in evolutionary computation. Embedding populations in space, and thereby limiting direct 
competition to the local neighbourhood, is an effective way to maintain variation and improve 
evolutionary adaptation. It is also biologically more realistic, and computationally more efficient 
than global competition. It is the default choice in all our experiments. 

The relative amount of genotypic and phenotypic variation depends on the evolved GP map. High 
genotypic variation is maintained in the case of high neutrality, because the resulting low selection 
pressure does not weed out genetic variation, whereas conversely large phenotypic variability 
leads to low genotypic variability, because of high selection pressure. Evolution of the GP can lead 
to very counter-intuitive results, e.g. to much lower genetic variability at high mutation rates (Colizzi 
and Hogeweg, 2014). 

Variability at the ecosystem level 

How variability (diversity) at the level of ecosystems evolves and is maintained is a long-standing 
problem in ecology and evolution: why does not a “best” species evolve and out-compete all others 
owing to the principle of niche exclusion? Various mechanisms/conditions have been elucidated in 
our research. In Evo2Sim we have shown that regular, i.e. seasonal, environmental variation, 
caused by periodic refreshing of the medium, can lead to speciation into two lineage which thrive in 
different seasons, where one grows on the primary resource, while the second one uses a 
secondary resource (produced by the first one) when the primary resource is exhausted (Rocabert 
et al., 2016a,b). This speciation is very similar to that seen in a subset of the LTEE clones (Plucain 
et al., 2014). In the in silico experiments it is stable only for regular fluctuations, as is indeed the 
case in the LTEE experiments. 

Heterotrophic species can also evolve under conditions of spatial environmental variability 
generated by local variation of influx of different resources, which is however constant over time. 
Heterotrophy then allows the species to expand their range over the different environments. The 
spatial environmental variation is then not reflected anymore in the species composition as they 
occur intermingled in all environments (Meijer et al., 2016). 

Yet another mechanism to maintain ecosystem diversity is, counter-intuitively, horizontal gene 
transfer (HGT). By the evolution of differential rates of HGT for toxin and resistance genes high 
ecosystem diversity, with deep phylogenetic variation is maintained, despite the occurrence of 
super-killers (van Dijk and Hogeweg, 2016). 

Multiple species ecosystems typically evolve in spatially embedded mutualistic systems, whereas 
these tend to go extinct in globally mixed systems due to the evolution of cheaters. Replicator 
systems are a preeminent example. We have shown, e.g. the evolution of rich multi-species 
ecosystems in spatially embedded version of the automata chemistry stringmol. The strains differ 
in replication (copying) mechanisms, and thereby the rates as well as the types of mutations 
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evolve. The result of the evolution is an increase in population size due to a decrease of 
parasitism. 

These results are very relevant for ecological theory, providing examples that counter the default 
expectation of competitive exclusion. They are also very relevant for evolutionary computation 
because evolved ecosystem based diversity can also be exploited for problem solving by 
evolutionary computation (de Boer and Hogeweg, 2012). 

2.4.3. Task 3.2. Evolution of Robustness 

Robustness at the genome level 

Organisms have evolved a plethora of repair mechanisms that protect genomes against mutations. 
Mutations (knock-out) of repair mechanisms lead to mutator strains. In the LTEE experiments such 
mutator strains evolved, which have a 100-fold higher mutation rate. The mutators were able to 
adapt faster to the LTEE conditions than non-mutator strains, but slowly lower their mutation rates 
again (Tenaillon et al., 2016). 

We studied the evolutionary dynamics of mutator strains by increasing (point) mutation rate 100-
fold in silico evolved wild-type E-coli-like genomes (Rutten et al., 2016a,b), as an interesting 
example system for EvoEvo. We showed that a lack of robustness at the genome level of the 
mutator strains leads to the evolution of even higher mutation rates, and especially large-scale 
duplications and deletions, through an increase of genome size, which nevertheless leads to the 
recovery of fitness. This is mediated by increased robustness and increased selection at the 
phenotypic level by mechanisms explained below. 

Genome robustness and evolved repair mechanisms were also studied with respect to 
transcription-induced mutations in yeast (Colizzi and Hogeweg, 2016a,b). The evolved repair 
mechanism appears to decrease point mutation rate while increasing duplications and deletions. 
We showed that short-term selection pressures tend to lead to long-term genome deterioration, 
and thereby to loss in fitness without the repair mechanism. Even when the lack of repair increases 
overall mutation rate, the shift in type of mutations leads to more dynamic genome structure, but 
prevents the long-term deterioration. 

Robustness at the phenotype level 

Mutational robustness at the phenotype level refers to insensitivity to mutations at the phenotypic 
level, i.e. to neutrality. A classic example of EvoEvo is the increase of neutrality in long-term 
evolution in a constant environment when mutation rate is high enough, as was first seen in RNA 
evolution (Huynen et al., 1996; van Nimwegen et al., 1999). Such phenotypic robustness leads to 
high genetic variability and therewith slows better exploration of genotype space, and therewith 
increased, population based evolvability (Huynen, 1996) – see below. 

Alternatively, and seemingly contradictory, evolution at high mutation rates can evolve low 
phenotypic robustness, but can maintain high fitness by low phenotypic robustness, because this 
leads to high selection pressure (Krakauer and Plotkins, 2002; Elena et al., 2007). 

An important addition to this basic theory is our discovery that prolonged evolution not only 
increases neutrality, but also increases large phenotypic changes by single mutations. In other 
words the mutational neighbourhood, represented in terms of the frequency (Y axis) of the amount 
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of phenotypic change (X axis) becomes “U-shaped”. (Cuypers and Hogeweg, 2012; Rutten et al., 
2016a,b). This U shape combines neutrality and high selection pressure, and therewith combines 
the best of both worlds. Skewing the U-shape in either direction is an important mechanism and 
consequence of EvoEvo. 

Indeed the evolutionary dynamics of the mutator strain, leading to recovery of fitness deepens the 
U shape, i.e. increases neutrality and highly deleterious mutations, while decreasing slightly 
deleterious mutations (Rutten et al., 2016a,b). 

Robustness to environmental variation of a phenotype can evolve by evolution of gene regulation. 
We have studied this in the form of evolution of internal homeostasis under strong external 
resource fluctuations, with only implicit sensing of the variation in the internal environment. Given 
frequent enough environmental changes and provided that early genome expansion occurs, high 
degrees of homeostasis do evolve. 

Robustness at the population level 

Robustness at the population level can be maintained despite or due to low robustness at the 
individual level. This is achieved by high (individual) evolvability, by which the phenotypic 
composition of the population varies over time maintaining a stable population despite with 
environmental varying environmental demands. This strategy appears to occur in the virtual 
microbe model in complex, time varying environments (Cuypers et al., preliminary results). 

Robustness at the ecosystem level 

Robustness at the ecosystem level is discussed below (section 2.4.5). It is mediated by robustness 
and/or evolvability at the other levels 

2.4.4. Task 3.3 Evolution of Evolvability 

Evolvability at the genome level 

A general mechanism increasing evolvability at the genome level is the tuning of non-coding 
intergenic regions. This apparent junk can form the substrate for novel genes, as analysed in detail 
in Aevol (Knibbe and Parsons, 2014). Moreover, by tuning the amount of intergenic regions, the 
relative frequency as well as the impact of different type of mutations is tuned. More intergenic 
regions increases genome length, without (or barely) increasing the effect of point mutations, 
whereas the frequency and length of large duplication's/deletions is increased. This mechanism is 
used to cope with high point mutations rates, increasing robustness and evolvability at other levels 
(Rutten et al., 2016a,b) – see above. 

Tight genomes, with only very small intergenic regions, evolve at very high per base mutations 
rates as in viruses (Beslon et al., 2016a,b). Wild-types adapted to a certain environment tend to 
have exhausted all available small (e.g. point) mutations, and they seem evolutionary stuck. In 
those case innovations tend to occur in cascades after rare, not too deleterious duplications (or 
deletion), which deform the fitness landscapes and open up novel dimensions of variability and 
evolvability (Beslon et al., 2016a,b). 

Evolution of Evolvability by genome structuring is also observed in response to recurrent 
environmental changes, through transposon dynamics. Inverted repeats left by transposons create 
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hotspots for large duplication/deletion, and together with genome rearrangement biases mutation 
to being beneficial, as shown by Crombach and Hogeweg (2007), and as appears to be the case in 
yeast adapting to new resource environments (Dunham et al., 2002). Likewise the replication fork 
barriers in between ribosomal genes appear to be an evolved to increase bias transcription 
induced mutations to be duplication/deletion of entire genes. We have shown that this increases 
evolvability as well as long-term robustness (Colizzi and Hogeweg, 2016a,b). 

Evolvability at the phenotype level 

Evolution of the GP map not only evolves the amount of phenotype change due to mutations, but 
also the specific changes that occur. Subjected to recurring environmental changes, the mutational 
neighbourhood evolves in such a way the very few mutations change the phenotype to match the 
alternative environments. This was first shown by Crombach and Hogeweg (2007, 2008) and is 
achieved either by genome structuring via transposon dynamics, or by switching between 
attractors of gene regulatory networks. The bias to be beneficial in the other environment is true for 
all types of mutations allowed. Thus, very fast evolutionary adaptation evolves, i.e. evolution of 
evolvability. 

We now have shown, moreover, that the ability to regulate achieves phenotypic robustness to 
some type environmental fluctuation (i.e. homeostasis) strongly increases phenotypic evolvability 
to novel environmental changes, never seen before (Cuypers et al., 2016). Repeating these 
changes increases evolvability even further, even if they occur very infrequently (up to once per 
thousand generations tested). This means that very high fitness is maintained despite these 
(drastic) environmental changes. Strikingly the average fitness due to phenotypic evolvability is 
similar with the average fitness due to regulation (plasticity), while plasticity is much harder to 
evolve, if it evolves at all, which it does only after many relatively frequent switches (Cuypers et al., 
2016). 

Evolvability at the population level 

Phenotypic mutational robustness, leads to high genotypic variability, and therewith to high 
evolvability of the population, as mentioned above. 

2.4.5. Task 3.4. Evolution of open-endedness at the population level 

In D3.4 a comprehensive review is given of different concepts and different levels of open-
endedness. Here, we summarize our results on evolutionary systems in which no fitness function is 
defined a priori (or only partially defined, imposing only weak constrains) but only represented as 
what in fact does survive, and in which the evolving, replicating entities can either directly interact, 
or interact by changing the (local) environment. These are minimum requirements for potential 
open-ended systems. We used four different implementations of such potential open-ended 
systems, to study EvoEvo dynamics. These are: (1) the Evo2Sim model developed in WP2 
(Rocabert et al., 2016a,b), (2) the virtual microbe model (VM model) (Cuypers and Hogeweg, 
2015), which an extension of Virtual cell model (Cuypers and Hogeweg, 2012; 2014) (3) the RNA 
world models (Takeuchi and Hogeweg, 2008; Colizzi and Hogeweg, 2014), (4) spatial embedded 
stringmol (Hickinbotham and Hogeweg, 2016). In the former two models evolving entities have a 
PoaS-like genome and a metabolism, can evolve gene regulation and use up resources from the 
environment, and interact via the resources. The Evo2Sim implements potential open-endedness 
by allowing an unbounded set of metabolites (i.e., integers, where prime numbers provide 
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functionality) and enzymes (converting metabolites), and allowing unconstraint mutation of 
enzymes. In contrast the VM model implements a restricted universe of potential metabolites and 
enzymes and constrains mutations of enzymes into each other. In the latter two systems minimal 
replicators interact via complementary binding, and evolve GP maps. 

Ecosystem robustness prerequisite for ongoing evolution, and is strongly facilitated by 
spatial self-organization 

For ongoing (open-ended) evolution a prerequisite is survival of the eco-evolutionary system. 
Spatial embedding, and thereby spatial pattern formation, is often a prerequisite for survival, i.e. for 
preventing the system to evolve to extinction. Such evolutionary extinction is common in non-
spatial models requiring cooperation for survival. For example, only after embedding StringMol 
model in space, could its evolutionary potential unfold. As detailed in D3.4 it shows a rich spectrum 
of innovations through EvoEvo: new strategies of robustness against cheaters, evolving new types 
of mutations through copying errors, e.g. whole genome duplications, converting templates to 
primers, i.e. copying self rather than the template etc. (Hickinbotham and Hogeweg, 2016) 

Moreover spatial pattern formation leads to multilevel evolution. Multilevel evolution, whether 
generated automatically through spatial pattern formation or through the prior definition of multiple 
levels as e.g. (proto)cells, does not only protect against extinction, or lead to a compromise of 
opposing selection pressures, but actually open up a gateway to the evolution of complexity, and 
ultimately open-endedness, as discussed in Takeuchi et al. (2016a,b). A pre-eminent example is 
our demonstration of the evolution DNA in the RNA world, i.e. the separation of information storage 
and usage, one of the major transitions in biological evolution (Takeuchi et al., 2011).  

Evolvability mediates ecosystem robustness 

Stability (robustness) of diverse ecosystems is a long-standing problem on ecology. On-going 
evolution is an often-ignored stabilizing factor. We have shown in the RNA world models that too 
low mutation rates lead to extinction even in spatial embedded systems (Takeuchi and Hogeweg, 
2008), and that the evolved mutational neighbourhood, in which there are extreme phenotypic 
difference between close mutants (i.e., high phenotypic evolvability) cause ecosystem robustness 
at very high mutation rates (Colizzi and Hogeweg, 2014). 

As we have seen above, evolvability is relatively easy to evolve. In the metabolic based 
ecosystems high levels of evolvability (and/or speciation) appear to prevail as strategy to cope with 
variable environments, over individual plasticity through gene regulation. No persistent gene 
regulatory networks were found in the Evo2Sim model, possibly due to the inherent high 
evolvability. In the VM model plasticity did evolve, but this appears to require relatively simple 
environments, and strong energy limitation. Similar to what we saw above, evolved plasticity 
enhances evolvability to changed environmental conditions, e.g. the conditions of the LTEE 
experiment (van Dijk et al., 2016a,b). 

Our experiments have also alerted us to the fact that evolving (and maintaining) complex gene 
regulatory networks does not imply plasticity and physiological adaption to environmental variation. 
Its main functionality appears to be the suppression of gene expression, and thereby conveys 
robustness to addition of new genes by duplications or HGT. This would support the conjecture 
that such (initial) suppression is the common in genes required by HGT, and are retained in 
biological populations. 
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Speciation mediates ecosystem robustness 

Speciation evolves readily in all the potential open-ended systems, and helps to maintain 
ecosystem robustness/persistence despite spatial and temporal imposed environmental variability, 
and/or against short-term selection pressures leading to extinction. For example the evolution of 
parasitic (cheater) lineage prevents evolutionary extinction in simple RNA systems (Hogeweg and 
Colizzi, 2016c). 

Moreover speciation into a lineage that uses the leftovers of the other species evolved in the 
Evo2Sim model to cope with the imposed LTEE-like seasonality (Rocabert et al., 2016a,b), 
similarly to what is seen in (some of the) E. coli LTEE experiments. In the VM models, speciation 
does not occur when plasticity evolves (van Dijk et al., 2016a,b), and the resulting phenotypic 
robustness is sufficient to cope with the imposed temporal environmental variation of LTEE-like 
condition. We have referred to speciation vs plasticity as ecosystem based vs individual based 
diversity or complexity (de Boer and Hogeweg, 2012), in the context of problem solving by 
evolutionary computation). 

Speciation also occurs in spatially variable, but temporally constant environment. This is not 
surprising as the species can simply adapt to the different niches. More surprising is the evolution 
of obligatory heterotrophy in such system, i.e. the evolution of species that (mutually) need 
products produced by the other. This leads to evenly spread species over the whole environment 
in such a way that the environmental niches are not reflected in the ecosystem anymore (Meijer et 
al., 2016), and a very stable ecosystem persists. 

2.4.6. Conclusions 

By using various approaches, and through many discussions, the groups at INRIA and UU working 
together in WP3 have been very successful in elucidating general principles of how Darwinian 
evolution shapes the variability, robustness and evolvability of genomes, individuals, populations 
and ecosystems, as well as the understanding of the entanglement of these processes. In 
collaboration with UGA and CSIC we developed digital equivalent of the laboratory experiments 
conducted in WP1. Preliminary analyses led to a generalization of the in vivo observation, in the 
context of the E. coli LTEE (Rocabert et al., 2016a,b; van Dijk et al., 2016a,b; Rutten et al., 
2016a,b) as well as in the context of the TEV (Beslon et al., 2016a,b). Overall we have shown how 
EvoEvo arises even in relatively simple models, and often leads to counter-intuitive consequences 
that seem to contradict survival of the fittest while they simply indirectly result from it. 

2.5. Workpackage 4: A computational EvoEvo framework 

2.5.1. Introduction 

While WPs 2 and 3 developed and produced models of EvoEvo mechanisms and approaches, 
focused on biological processes, the objectives of this WP4 were to take those biologically-oriented 
outputs, and develop suitable computational analogues, to form the basis of a novel route to open 
evolved computational and engineered systems (Figure 8).  

The development route was via a computational meta-model. This is essential for developing a 
coherent bio-inspired computational approach (Andrews et al., 2011). Developing a computational 
model directly from a biological model runs the risk of confusing biological-contingent detail (the 
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existence of three pathways, say) with the underlying principle (the existence of multiple pathways 
refined for particular purposes), leading to a rigid, over-constrained, and naïve implementation. The 
meta-model route instead exposes the underlying principles, abstracts away from the irrelevant 
details, and results in a more flexible computational analogue. 

 

Figure 8: Position of WP4 in the biology-to-application scheme of EvoEvo 

This section present the contributions of WP4 organized by tasks. Section 2.5.2 presents the 
modelling work that re-interpret the biological and computational models used/developed in WP1, 
WP2 and WP3 in the CoSMoS approach. Section 2.5.3 presents the development of the 
computational framework (EvoMachina) based on this model. Finally, section 2.5.4 goes one step 
further and proposes new directions for a bio-reflective architecture able to fully implement the 
EvoEvo concepts. 

2.5.2. Contribution 1 (task 4.1): EvoMachina meta-model and model 

We took input from WP2 and WP3 (code, literature, partner discussions) as our starting point. We 
applied the CoSMoS approach to this material, and reverse-engineered a CoSMoS Domain Model 
from the Lyon INRIA partners’ Aevol code, and identified the key unifying concept of machine on 
which to base the modelling. See (Andrews and Stepney, 2014). We engineered a prototype 
python implementation of the core Aevol code, then refactored it to support the machine concept, 
as a means of validating the model. As a spin-off from this work, we also identified a further 
component needed in some uses of the full CoSMoS approach (Andrews and Stepney, 2015b). 

We then applied the meta-model concept from the CoSMoS approach, using it to ensure an 
underlying coherence between specific models (particularly the biological domain and the 
computational platform). Here we refined the key machine concept, and clarified its central role in 
the architecture. We included the structures necessary to allow machines to be encoded on the 
genome, thereby allowing them to evolve, by generalising the PoaS genome model from the 
Utrecht partners. See (Andrews and Stepney, 2015a). 

This computational meta-model is described fully in D4.1, and an extensive computational model 
requirements specification is given in D4.2. Together, these lay out the specification for a novel 
evolutionary algorithm, dubbed EvoMachina, based on two main concepts from EvoEvo: 

1. That genomic reorganisation is an important factor in the evolution of evolvability. 
2. That the machinery of evolution (expression, replication, etc) is implemented by machines 

that are themselves encoded on the genome, and hence are themselves subject to 
evolution. 
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The conceptual model is summarised in Figure 9 (some components omitted for clarity). 

The machine concept has proved valuable in structuring the development of EvoMachina. We 
have been guided by the biological inspiration, but have also, in the manner of all bio-inspired 
algorithms, deviated from emulation of biology where appropriate. The first key insight is to use 
machines (active entities) to implement the mechanisms of the system, in particular, to establish 
the relationships between the various passive information-bearing and evolvable components. The 
second key insight is to allow those machines to be encoded in the information-bearing 
components, so that they are subject to evolution. 

Resources committed 

Susan Stepney provided the project management. Paul Andrews (month 1-18) developed the 
model and specification. 

 

 

Figure 9: Conceptual model of EvoMachina: see D4.1 and D4.3 for details. 

2.5.3. Contribution 2 (task 4.2): EvoMachina Java framework implementation 

We used the meta-model and requirements specification from D4.1 and D4.2 to develop an object-
oriented Java executable framework, implementing EvoMachina. See (Hoverd and Stepney, 2016) 
and D4.3. We extended the original specification to allow multiple “genomes” of different types 
(different Repository subclasses). This proved useful to separate concerns of different types of 
evolvable machines, in particular, the evolution of the “candidate solution” and the evolution of the 
Kloner “mutator” machine. D4.3 provides a description of EvoMachina, the Java framework that 
implements this specification. 
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EvoMachina code is available from github.com/evoevo-york/evomachina 

The current release of EvoMachina (v2), includes two example applications, one of the classic TSP 
optimisation problem, and one of the ChameleoClust subspace clustering algorithm (where the 
genome “pearls” are tuples of numbers representing parts of cluster centres) as developed in 
EvoEvo for use in WP5 (see section 2.6.2 for details of the algorithm).  

In these examples the mutation operators and mutation rates also themselves mutate, by having 
key components and parameters encoded in evolvable mutation genomes. (See Figure 10.) 

• TSP 
o problem domain Repository: “pearls” are individual city locations 
o mutator domain Repository: “pearls” are values of k for k-opt operations 

• ChameleoClust 
o problem domain Repository: “pearls” are tuples of numbers, representing (parts of) 

cluster core-point locations 
o mutator domain Repository: “pearls” are mutation, deletion, and duplication rates 

 

 

Figure 10: Instantiation of an EvoMachina Individual for the TSP: see D4.3 for details. (Some 
machines are omitted for clarity.) 

EvoMachina uses several EvoEvo properties identified in WP1 and WP3, some of them having 
previously been tested in WP2. However, it also adds new features that enable the use of these 
EvoEvo properties in a broader application context: 



EvoEvo Project 

 

Deliverable 6.8 
FP7-ICT FET Proactive EVLIT program Final report 
Project reference: 610427 Version 2.4 

 

   Page 38 of 77 

1. EvoMachina allows multiple different types of genomes, allowing appropriate 
representations and machinery to be used for different parts of the application. For 
example, the mutation machinery can be encoded in a separate genome, allowing the 
mutation operators to evolve in a different manner, and at a different rate, from the 
application’s candidate solutions. 

2. An important realisation was that it is not necessary for EvoMachina to faithfully emulate 
biology by encoding the totality of a machine on the genome. EvoMachina allows some 
parts of each machine to be hard-coded, and hence un-evolvable, and other parts to be 
encoded on the genome, and hence evolvable, again in an application-dependent manner. 
For example, in the TSP application, the Kloner mutation machine implements a k-opt 
reorganisation of the city permutation: the value of k is encoded on the mutator genome 
allowing evolution, but the actual algorithm from reorganising the genome is hard-coded, 
and so protected from evolution. This allows a suitable separation of concerns, and 
supports more flexible mutation possibilities. 

In addition to the two example applications, the EvoMachina framework comes with a variety of 
evolutionary variants: classic EA, microbial GA, as well as the EvoMachina specific operators, and 
with a variety of spatial options, including an aspatial (well-mixed) option and a 2D toroidal grid. 

This implementation demonstrates that EvoMachina can support classic EAs, but also has more 
flexibility to support the evolution of evolution, by also providing concepts and mechanisms that 
support the evolution of the evolutionary machinery itself. 

Resources committed 

Susan Stepney provided the project management. Tim Taylor (month 19-24) provided validation of 
the models, and investigations of appropriate physics engines. Tim Hoverd (month 25-36) 
implemented the EvoMachina Java framework and developed the example applications. 

2.5.4. Contribution 3 (task 4.3): Bio-reflective architecture and applications 

We have argued that computational reflection is an essential component of computational novelty 
generation (Banzhaf et al., 2016). In this task we developed a new bio-reflective architecture 
(Hickinbotham and Stepney, 2016a). It is a synthesis of concepts from: 

1. von Neumann’s Universal Constructor Architecture 
2. procedural computational reflection  
3. evolutionary algorithms 
4. computational open-ended novelty mechanisms 
5. the EvoMachina architecture of evolvable active machines and passive genomic structures 

Parts of this architecture were realised in the stringmol automata chemistry, and various 
experiments were run to demonstrate its worth (Hickinbotham and Stepney, 2015a,b; Clark et al., 
submitted), see D4.4 and D4.5. 

Additionally, parts of the architecture were realised in other implementations, using Domain 
Specific Languages. In particular, a stand-alone evolutionary music application was developed 
(Hickinbotham and Stepney, 2016b), see D4.5, and was also integrated with the WP5 dance 
application (Abernot et al., 2016). 
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This bio-reflective architecture (Hickinbotham and Stepney, 2016a), for the first time, incorporates 
concepts from computational reflection into an evolving computation system. Automata chemistries 
provide an ideal vehicle for implementing these at a low level. A higher-level approach, exploiting 
the EvoMachina architecture (D4.3), fits into the same model: EvoMachina’s ability to separate the 
evolving and fixed parts of machines removes the fragility of attempting to evolve everything. 

The main experiment of encoding a bio-reflective system into the stringmol language demonstrated 
semantic closure – the changing of the meaning of a genome without changing its text – for the 
first time in an evolving computational system (Clark et al., submitted). 

Additionally, a combined research with Utrecht (WP3) based on this approach has demonstrated 
the clear role that space plays in the robustness of evolving systems, by permitting the system to 
survive parasites (see section 2.4.5). 

Resources committed 

Susan Stepney provided the project management. Simon Hickinbotham (month 13-36) designed 
the architecture and ran the experiments. 

2.5.5. Conclusion 

We have developed a novel evolutionary algorithm, EvoMachina, by analysing and abstracting the 
relevant EvoEvo biological concepts, and have demonstrated its capabilities in two applications, 
TSP and subspace clustering. The new architecture supports the evolution of evolvability in an 
evolutionary algorithm for the first time, by allowing genome reorganisation, and by allowing the 
machines of evolution to evolve. 

We have augmented EvoMachina’s directly bio-inspired approach to evolutionary algorithms with 
another novel architecture: the bio-reflective architecture. This is inspired not only by biology 
(compatible with the EvoMachina framework), but also by computational concepts, specifically that 
of computational reflection. We have realised this architecture on the stringmol platform, and have 
observed a form of semantic closure for the first time in an artificial system. 

By designing, implementing, and executing these novel architectures, we have demonstrated how 
close cooperation with the leading edge of wet-lab biological and computational biological research 
can inspire sophisticated next-generation computational algorithms. 

2.6. Workpackage 5: EvoEvo applications 

2.6.1. Introduction 

WP5 constitutes the final step of EvoEvo. Its objective was to build proof-of-concept applicative 
software that use the theoretical and practical outcomes of the 4 previous WPs (Figure 11). 
Embryonic examples of living technologies have existed for more than 15 years – see, e.g. (Sims, 
1994; Funes and Pollack, 1999; Lipson and Pollack, 2000) – but they have never really 
demonstrated usability or feasibility. Apart from the technological difficulties of building living 
technologies, this is due to the lack of real applications and to the limit of the toy-problems used to 
demonstrate the capacities of these technologies. In the EvoEvo project, we decided to directly 
concentrate on a real application, but we carefully designed it such that its difficulty should be 
manageable in the context of the project. Our objective here were to design living technologies 



EvoEvo Project 

 

Deliverable 6.8 
FP7-ICT FET Proactive EVLIT program Final report 
Project reference: 610427 Version 2.4 

 

   Page 40 of 77 

able to manage the complex, unstable and unstructured flux of information produced by smart 
sensors in order to enable intelligent agents (here personal companions) to adapt to their usage 
context. 

The new wireless sensor technologies have been at the origin of a profound shift in the concept of 
smart houses, smart buildings and smart cities, since the sensing structure now evolves faster than 
the structured of the sensed system. On the one hand, this situation creates huge information 
management difficulties since the sensing system cannot be modelled before it is used. On the 
other hand, the generated flux of information enables the monitoring of the system with a quality of 
service never before achieved. The proof-of-concept applications of EvoEvo directly follow from 
these two points. Our aim was to create a software infrastructure able to manage this flux of 
information. This Infrastructure was tested in real situations (i.e., while interacting with naïve 
users). The objectives were: 

• To generate a stable model of the environment, despite the evolution of the sensing 
network. The biological analogy here is the notion of the circadian cycle, which is 
maintained and used in most living creatures despite the parallel and different evolution of 
their biological sensors. This application was tackled in task 5.1. 

• To design intelligent agent(s) that are able to use the information flux produced by the 
sensors to learn and invent actions in accordance with usage and users. These intelligent 
agents can thus become personal companions of their users and progressively adapt to 
them so that their presence becomes first acceptable and second useful. These agents 
were designed in task 5.2. Note that while the general context is smart sensors embedded 
in houses, buildings or cities, the application developed in task 5.2 concentrated on body 
sensors as they enable easier testing sessions than smart buildings. This choice was 
proposed by the HiKoB company (our sensor provider) and was validated during the two 
first project reviews (see deliverable D6.4). 

 

Figure 11: Position of WP5 in the biology-to-application scheme of EvoEvo 

While WP5 was organised in two tasks, we organize this section in three contributions. The first 
(section 2.6.2: Contribution 1: An evolutionary subspace clustering algorithm exploiting EvoEvo 
strategies) corresponds directly to task D5.1, while the two remaining correspond to two different 
parts of task 5.2: the development of the adaptive software companion (section 2.6.3: Contribution 
2: Applications) and its testing with real users (section 2.6.4: Contribution 3: Testing living 
technologies). Even though this last contribution was integrated in task 5.2 in the DoW, it resulted 
in a very specific work. 
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2.6.2. Contribution 1: An evolutionary subspace clustering algorithm exploiting 
EvoEvo strategies 

Clustering is a data-mining task that aims to group objects sharing similar characteristics into a 
same cluster over the whole data space. Usually similarity between objects is determined using a 
distance function. Subspace clustering purpose not only implies identifying groups of similar 
objects, it also aims to detect the subspaces where similarity occurs. Subspace clustering can be 
conceived as “similarity examined under different representations” (Patrikainen and Meila, 2006). It 
is for this reason that subspace clustering is recognized as a more complicated and general task 
than standard clustering. Moreover, retrieving meaningful subspaces is particularly useful when 
dealing with high dimensional data (Kriegel et al., 2009). 

Many approaches have been investigated for subspace clustering in the literature using various 
clustering paradigms. The reader is referred for instance to (Kriegel et al., 2009; Müller et al., 2009; 
Parsons et al., 2004) for detailed reviews and comparisons of the methods, including the main 
categories: Cell-based, density based, clustering-oriented approaches and also pattern-based 
clustering or bi-clustering approaches, e.g., (Sim et al., 2013). The two algorithms developed in 
EvoEvo belong to the clustering-oriented category; such approaches are based on parameters 
specifying properties of the targeted clustering such as the expected number of clusters or the 
cluster average dimensionality. According to these constraints, the objects are grouped together 
mainly using distance-based similarities. Most of these methods tend to build center-based 
hyperspherical shaped clusters. 

Even though many evolutionary clustering approaches exist (Hruschka et al., 2009), very few of 
them address the subspace-clustering problem. Two earlier approaches presented in (Sarafis et 
al., 2003) and (Vahdat et al., 2010) require non-evolutionary steps to identify clusters in lower 
dimensional spaces. The two algorithms developed in EvoEvo, called ChameleoClust+ and 
SubCMedians, are both a single stage fully evolutionary approach, without any preliminary stage to 
identify clusters in lower dimensional spaces. Both algorithms take advantage of EvoEvo by means 
of an evolvable genome structure to tackle the subspace-clustering problem. The key underlying 
principle is to use such an evolvable genome structure to find various numbers of clusters in 
subspaces of various dimensionalities. 

The first algorithm, ChameleoClust+, has a coarse-grained genome defined as a list of tuples of 
numbers, and containing a variable proportion of non-functional elements (similar to the genome 
used in Evo2Sim, see section 2.3.3). This genome is mapped at the phenotype level by using the 
genome tuples to denote core-point locations in different dimensions, which are then used to build 
the subspace clusters. During replications the genome undergoes both local mutations and large 
random rearrangements, namely: large deletions and duplications. Local mutations modify the 
genome elements and rearrangements modify the genome length and the proportion of non-
functional elements. The key intuition in the design of the ChameleoClust+ algorithm is to take 
advantage of such an evolvable structure to detect various numbers of clusters in subspaces of 
various dimensions. In addition, ChameleoClust+ takes advantage of the genetic memory through 
evolution to evaluate the fitness over a sliding dataset sample, leading to an important reduction of 
the execution time, without effective degradation of the clustering quality. ChameleoClust+ was 
compared to state-of-the-art algorithms on both real and synthetic datasets using the evaluation 
framework presented in (Müller et al., 2009). The experiments show that ChameleoClust+ obtains 
competitive results with a single parameter related to the domain, i.e., the maximal number of 
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clusters. A sensitivity analysis carried out by varying the main parameters one-at-a-time, revealed 
that the impact of the parameters related to the evolution strategy (population size, mutation rate...) 
are low for a large portion of the parameter space. Further analysis revealed that the elitist 
reproduction method used in this algorithm ensured slightly better results for the majority of the 
experiments presented here. Finally a deeper analysis of the impact of the presence of the non-
functional elements showed that the subspace clustering quality increased considerably when non-
functional elements were incorporated in the algorithm. ChameleoClust+ is available on the project 
website at (http://evoevo.liris.cnrs.fr/chameleoclust/). 

The second algorithm, SubCMedians, was inspired by ChameleoClust+. As before, each individual 
encodes a candidate subspace-clustering model and selected individuals are copied and mutated 
to produce the next generation. However, in SubCMedians, the phenotypic description (core-point 
locations) is explicitly encoded, and thus the algorithm requires fewer operations, since it does not 
need to decode genomes to produce the phenotypic description. Moreover, in order to achieve a 
more efficient exploration of the space of possible models, SubCMedians uses data objects 
themselves to build and adjust each core-point’s coordinates so that they approximate the 
locations of the median of their corresponding cluster. The explicit representation of the phenotype 
and the use of a median based approach lead to significant reduction of the runtimes and allowed 
tackling the subspace clustering of data streams on-the-fly. In addition to the explicit representation 
at phenotypic level, the design of SubCMedians also incorporates an evolvable representation at 
the genotype level in order to allow for evolution-of-evolution. The genotypic description stores the 
number of genes that are involved in the construction of each core-point location along each 
dimension. In this representation, the number of genes used to encode each coordinate can vary 
without a direct impact on the subspace clustering model, and individuals can share the same 
phenotypic description yet have different genome structures (different number of genes associated 
to each core-point location). An important contribution of SubCMedians is to show that a median-
based subspace clustering approach can exhibit satisfactory results when compared to well-
established subspace clustering paradigms. Moreover, since no subspace clustering technique 
based on medians has been reported in subspace clustering techniques reviews, e.g., (Kriegel et 
al., 2009; Müller et al., 2009), nor in recent subspace clustering proposals, e.g., (Wang and Zhu, 
2015; Liu et al., 2013), the SubCMedians algorithm is a good candidate as a complementary tool, 
in particular for users interested in the properties of medians themselves (facility location, 
robustness to noise and outliers). 

The interest of the flexible genome structure, controlled by evolution itself, to tackle the subspace-
clustering problem are discussed in (Peignier et al., 2015a), and a preliminary version of 
ChameleoClust+ received a best paper award in the category Evolutionary Machine Learning at 
the conference GECCO 2015 (Peignier et al., 2015b). This preliminary version has been 
implemented in EvoMachina (see section 2.5.3). 

Resources committed: 

Sergio Peignier, Anthony Rossi, Christophe Rigotti, and Guillaume Beslon designed and 
implemented ChameleoClust+ and SubCMedians. They also ran the experiments to evaluate 
these algorithms. 
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2.6.3. Contribution 2: Applications 

EvoWave: classifying Wi-Fi context 

ChameloClust+ was tested with a proof-of-concept application on a dynamic data stream. Even 
though the problem addressed is still a subspace-clustering problem, new difficulties are added by 
the context of a dynamic stream. The number of classes may change over time; the location of the 
classes is also susceptible to change over time; the descriptors of the incoming objects are also 
susceptible to change (i.e., features can appear or disappear). The real-world data stream used for 
these experiments is the Wi-Fi environment in which any ICT device is immersed: the strength of 
the signal from every Wi-Fi antenna in the neighbourhood. This environment depends especially 
on available routers and other computers, so it is linked to the context of use of the computer: 
work, teaching, house, etc. If the Wi-Fi signals from different contexts are dissimilar enough from 
each other, we expect that ChameleoClust+ should be able to discriminate different contexts from 
the data. This corresponds to a dynamic stream problem as new classes (i.e., context of use of the 
computers) are appear or disappear at any time, and also because Wi-Fi antennas are never the 
same in different contexts (features appear and disappear). Moreover, this application is also 
challenging regarding the high dimensionality and noise level of the data. 

The results achieved by ChameleoClust+ on this dataset suggest that the genome structure of the 
organisms was able to adapt to the changes in the data stream. The same applies to the 
subspace-clustering model of the best individual, indeed the number of clusters and the cluster 
dimensionalities evolve along the data stream. Despite the changes in the data stream, the quality 
of the subspace clusters produced by the individuals tended to remain interesting. The algorithm 
seems to be adaptable enough to cope with the changes in the data stream by adapting the 
subspace clustering models encoded in the genomes. Nevertheless we also observed that the 
genome structure often contained far more genes than those needed to encode the model, this 
phenomenon involved particularly core-points that are built but that corresponded to empty 
clusters. Such core-points often had high dimensionalities and many genes involved in their 
description and appeared to be inappropriate while dealing with such a dynamic environment. In 
order to limit the accumulation of many dimensions in empty (useless) clusters we proposed to limit 
the promotion of non-functional elements to functional ones. Further experiments were run to 
gather preliminary evidence regarding the effect of such a modification. These experiments 
showed that the modification lead to higher quality measures most of the time. This suggests that 
individuals were able to adapt more quickly to the changes in the stream because they had fewer 
core-points corresponding to empty clusters with high dimensionalities. 

This application of ChameleoClust+, called EvoWave, is described in deliverable D5.1, and the 
corresponding software components are distributed as a companion archive, available at:  

http://evoevo.liris.cnrs.fr/download/4_-_deliverables/wp5/Deliverable_D5.1_software_archive.zip 

EvoMove: a musical personal companion 

To explore further the potential of real-world applications of EvoEvo inspired technologies we 
developed a prototype of a musical system to produce music on-the-fly from the moves/dance of a 
performer. This system is named EvoMove, and its hardware is composed of wearable motion 
sensors, an acquisition gateway, a move recognition unit and a sound generator. The EvoMove 
system uses SubCMedians as a move categorization/recognition subsystem, and is fully described 
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in deliverable D5.2. Its use gave preliminary evidence regarding the capability of the system to 
handle real noisy data on-the-fly while continuing to evolve over this motion stream and constantly 
adapting to handle such an open-ended context. Real organisms have to constantly adapt their 
existing functions to new environments. For instance, predators have to adapt their capabilities 
(speed, teeth, claws, etc) to their co-evolving prey. In the EvoMove system, functions are the 
identification of clusters and typical changes are for instance a new cluster appearing when a new 
move is introduced by the user, or a cluster drift if the user decide to modify one of their moves. 
Thanks to its adaptable nature the system is able to follow such modifications while keeping in its 
genome memories of moves that are not seen during several generations so as to be able to 
identify them again when they reappear. This can be observed on videos of working sessions 
made available at  

https://www.youtube.com/watch?v=p_eJFiQfW1E 

and 

https://www.youtube.com/watch?v=E85B1jJOiBQ 

The use of the system as a core part to build a commensal architecture for evolving living 
instruments is introduced in (Abernot et al., 2016). 

Resources committed: 

Sergio Peignier, Jonas Abernot, Leo Lefebvre, Anthony Rossi, Christophe Rigotti, and Guillaume 
Beslon designed and implemented the EvoWave and EvoMove systems. 

2.6.4. Contribution 3: Testing living technologies 

A third contribution of the WP5 was to organize real working sessions with the EvoMove system. 
These tests were performed with people having different backgrounds and different approaches to 
the system, ranging from people who were the developers of the project themselves, to 
professional dancers and musicians. Several different sets of sample sounds were created for 
these sessions, in order to have various musical atmospheres. At the end of the sessions we 
asked the performers about the way they perceived the system and also their interactions with it. 

Two half-day sessions were organized with the dance company Anou Skan, and two of its dancers 
were filmed. As mentioned in the previous section, two videos recorded during these sessions are 
publicly available at https://www.youtube.com/watch?v=p_eJFiQfW1E  and 
https://www.youtube.com/watch?v=E85B1jJOiBQ . About ten sessions were organized with Claire 
Lurin, an engineering student and semi-professional dancer, and a project of solo dance piece 
using the EvoMove system is currently in progress. Several other informal sessions also took place 
with users who are not professional dancers, including a two hour collective session with the 
members of the Beagle INRIA team. A session was also organized with a violinist, who gave very 
different feedback from what was given by the dancers. 

What we learnt from the discussions we had with these different users, is that they found the 
system easy to use, but had very different representations of what the system was doing, and they 
thought/spoke about the system in very different ways. Here are three examples of these mental 
representations and feeling about the interactions: (The descriptions given here have been 
collected from different users after their first trial of the system) 
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• A musician: Felt like being involved in a teaching relationship with the system, trying to 
repeat gestures for the machine to memorize, trying to insist on some distinctions between 
gestures, as if he were teaching a trick to an animal. 

• A dancer: Perceived the system as a good monitoring tool for her moves, that was noticing 
small move differences by playing a different sound, as if a specialist (a dance teacher) 
were checking the correctness of her moves. 

• One of the developers of the system: As the system is based on a clustering algorithm 
dealing with sets of points and subspaces, he thought about it in a geometrical way. His 
perception, when using the system, was of placing points in a multidimensional space, so 
as to push and pull candidate cluster centers in this space. 

Furthermore, they each imagined very different usages/applications of the system, ranging from its 
use as a dance improvisation companion, to its use as an electronic instrument that could be 
mastered to control what sound will be played by the system and when. An interesting point is that 
they all perceived the adaptation capability of this EvoEvo inspired technology, and were able to 
experiment with it, without the need to adopt a common cognitive representation or to have 
dedicated training. 

Resources committed: 

Jonas Abernot and Christophe Rigotti organized these EvoMove working sessions. 

2.6.5. Conclusion 

WP5 was clearly a bet when we proposed the EvoEvo project. Three years ago, nobody could be 
sure that the results of the project would produce efficient applications. Now, at the end of the 
project we can state that not only has it done so, but more than that, that the users who tested the 
EvoMove application were immediately captivated. It is probably too early to affirm that this interest 
will last long enough to see public applications, but our exchanges with musicians, dancers and 
physicians on this system are all very promising. 

In a sense EvoMove is now an autonomous entity that is being used by dancers to co-create plays. 
We are all eager to see the results in a very near future. 

2.7. Workpackage 6: Project management 

2.7.1. Introduction 

The project management was described in the DoW document (WP6 and section B2). WP6 was 
composed of four tasks: 

• Task 6.1: Consortium Management and project monitoring 
• Task 6.2: Administrative & Financial Management 
• Task 6.3: Internal dissemination 
• Task 6.4: Interdisciplinary dissemination 

Partner 1 (INRIA) was in charge of these four tasks. The project coordinator (Guillaume Beslon) 
was directly in charge of tasks 6.1, 6.2, 6.3 and 6.4 and used the services of INRIA financial and 
legal affairs for task 6.2. Since administrative and financial management was reported in the 



EvoEvo Project 

 

Deliverable 6.8 
FP7-ICT FET Proactive EVLIT program Final report 
Project reference: 610427 Version 2.4 

 

   Page 46 of 77 

second review report, this document is structured as three contributions: project monitoring and 
management (section 2.7.2), dissemination (including internal dissemination – section 2.7.3) and 
the organization of the two EvoEvo interdisciplinary workshops (section 2.7.4). Although these 
workshops were dissemination activities, they are specific enough to deserve a dedicated section. 

2.7.2. Contribution 1: Project monitoring and management 

The project monitoring was based on regular exchanges between all project members during the 
general project meetings, bilateral exchanges between two members (sometimes three) for 
technical discussions, and email exchanges (e.g., for deliverables coordination). In particular, we 
had seven “all hands” project meetings during project: 

- Kick-off meeting (Lyon, October 28-29 2013). Attendees: Paul Andrews (Univ. of York), 
Laetitia Arnould (UJF, Legal affairs), Guillaume Beslon (INRIA), Cecile Cornu (INRIA, Legal 
Affairs), Santiago Elena (CSIC), Paulien Hogeweg (Utrecht Univ.), Carole Knibbe (INRIA), 
Otmane Lamrabet (UJF), Caroline Lothe (INRIA, Team assistant), Aurelia Mouton (INRIA, 
Human Resources Management), Christophe Rigotti (INRIA), Charles Rocabert (INRIA), 
Fanny Rossetti (INRIA, Financial affairs), Dominique Schneider (UJF), and Susan Stepney 
(Univ. of York) 

- General meeting (Utrecht, May 21-23 2014). Attendees: Paul Andrews (Univ. of York), 
Guillaume Beslon (INRIA), José-Luis Carrasco (CSIC), Thomas Cuypers (Utrecht Univ.), 
Enrico Sandro Colizzi (Utrecht Univ.), Bram van Dijk (Utrecht Univ.), Santiago Elena 
(CSIC), Paulien Hogeweg (Utrecht Univ.), Carole Knibbe (INRIA), Otmane Lamrabet (UJF), 
Sergio Peignier (INRIA), Charles Rocabert (INRIA), Jaap Rutten (Utrecht Univ.), Dominique 
Schneider (UJF), Gÿs Schroder (Utrecht Univ.), Susan Stepney (Univ. of York), Yoram 
Vadée-le-Brun (INRIA), and Anouk Willemsen (CSIC). Note that this meeting has been 
preceded by a long stay of Charles Rocabert (Partner 1) in Utrecht University to discuss the 
design of the computational model (WP2). 

- General meeting (Lyon, October 27-29 2014). Attendees: Paul Andrews (Univ. of York), 
Guillaume Beslon (INRIA), Thomas Cuypers (Utrecht Univ.), Bram van Dijk (Utrecht Univ.), 
Santiago Elena (CSIC), Paulien Hogeweg (Utrecht Univ.), Carole Knibbe (INRIA), Otmane 
Lamrabet (UJF), Vincent Liard (INRIA), David Parsons (INRIA), Sergio Peignier (INRIA), 
Christophe Rigotti (INRIA), Charles Rocabert (INRIA), Jonathan Rouzaud-Cornabas 
(INRIA), Susan Stepney (Univ. of York), and Yoram Vadée-le-Brun (INRIA). 

- General meeting (York, July 25-26 2015). This meeting immediately followed the first 
EvoEvo workshop. Attendees: Guillaume Beslon (INRIA), Thomas Cuypers (Utrecht Univ.), 
Bram van Dijk (Utrecht Univ.), Santiago Elena (CSIC), Simon Hickinbotham (Univ. of York), 
Paulien Hogeweg (Utrecht Univ.), Tim Hoverd (Univ. of York), David Parsons (INRIA), 
Sergio Peignier (INRIA), Charles Rocabert (INRIA), Susan Stepney (Univ. of York), and 
Yoram Vadée-le-Brun (INRIA). 

- General meeting (Valencia, February 22-24 2016). Attendees: Jonas Abernot (INRIA), 
Guillaume Beslon (INRIA), José-Luis Carrasco (CSIC), Thomas Cuypers (Utrecht Univ.), 
Bram van Dijk (Utrecht Univ.), Santiago Elena (CSIC), Simon Hickinbotham (Univ. of York), 
Paulien Hogeweg (Utrecht Univ.), Tim Hoverd (Univ. of York), Otmane Lamrabet (UJF), 
Sergio Peignier (INRIA), Charles Rocabert (INRIA), Susan Stepney (Univ. of York), and 
Anouk Willemsen (CSIC). 
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- General meeting (Utrecht, June 1-3 2016). Attendees: Jonas Abernot (INRIA), Guillaume 
Beslon (INRIA), Sandro Colizzi (Utrecht Univ.), Thomas Cuypers (Utrecht Univ.), Bram van 
Dijk (Utrecht Univ.), Simon Hickinbotham (Univ. of York), Thomas Hindré (UJF), Paulien 
Hogeweg (Utrecht Univ.), Tim Hoverd (Univ. of York), Otmane Lamrabet (UJF), Sergio 
Peignier (INRIA), Charles Rocabert (INRIA), and Susan Stepney (Univ. of York). 

- Final meeting (Amsterdam, September 21-22 2016). The objectives of this meeting were 
to prepare the end of the project and to structure the present document. Partners 2 (UJF) 
and 5 (CSIC) were not physically present but contributed to the decisions by mail. The 
meeting immediately follows the second EvoEvo workshop. Attendees: Jonas Abernot 
(INRIA), Guillaume Beslon (INRIA), Sandro Colizzi (Utrecht Univ.), Thomas Cuypers 
(Utrecht Univ.), Bram van Dijk (Utrecht Univ.), Simon Hickinbotham (Univ. of York), Paulien 
Hogeweg (Utrecht Univ.), Tim Hoverd (Univ. of York), Sergio Peignier (INRIA), Charles 
Rocabert (INRIA), and Susan Stepney (Univ. of York). 

 
All partners were represented at all the general meetings (except the third general meeting in York 
where partner 2 was unable to attend because of health concerns) and the people working full-time 
on the project attended most general meetings. Moreover, during the kick-off meeting in Lyon, 
members of INRIA financial affairs, legal affairs and human resources where attending to present 
the administrative rules of the project (see deliverable D6.3 for details). For all meetings, a meeting 
secretary was identified. The internal project communication was based on standard electronic 
tools: a mail diffusion list (evoevo@insa-lyon.fr), Skype, a Document Management System 
available on the project intranet, and development repositories (gforge.inria.fr and GitHub) used for 
software development. All these tools were available from November 2013 (i.e., during the first 
month of the project). 

The general project meetings were not the only project meetings held during the project. Many 
technical meetings were also held (generally between two partners, sometimes between three 
partners). Moreover, these technical meetings were often longer than the general project meetings 
in order to allow deeper technical/scientific discussions. The list of these technical meetings is too 
long to be presented here and we only present them globally: 

• Several technical meetings between partners 1 (INRIA) and 3 (UU) were held at the 
beginning of the project, to discuss the specifications of the integrated model (WP2). 

• A long visit of partner 3 (UU) and partner 1 (INRIA) to partner 2 (UGA) was held to discuss 
the modelling of the LTEE experiment in WP3. This long visit was followed by many shorter 
visits to discuss the implementation details. 

• Two technical meetings between partner 1 (INRIA) and partner 5 (CSIC) were held to 
discuss the modelling of virus evolution with the Aevol model. 

• Four technical meetings were held between partner 4 (UoY) and partner 1 (Inria) to discuss 
the concept of open-ended evolution. 

• Partner 4 (UoY) visited partner 1 (INRIA) to discuss the implementation of the EvoMachina 
software. 

• Partner 1 (INRIA) visited partner 4 (UoY) to coordinate the evolutionary music and dance 
demonstrations given at the Huddersfield conference. 

Although the global workload of the project meetings cannot be precisely computed, we estimate 
that the general and technical meetings globally represent approximately 15 person-months of the 
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total workload of the EvoEvo project (i.e., approximately 5% of the total workload). This clearly 
shows that the project management, monitoring and progress strongly relied on direct partner-to-
partner communications (this estimate does not take into account the many meetings organized 
locally by each partner). 

Globally we had no management difficulties during the project. All partners were very reactive to 
requests, and most deliverables and milestones were produced and met in time. Where 
deliverables or milestones were delayed, it was for technical and scientific reasons that were 
always discussed previously within the consortium. Given the size of the project and the number of 
collaborators, we had few management difficulties on that aspect. In particular, we are proud to 
announce that four collaborators of the project (Kirsten ten Tusscher, Carole Knibbe, Jonathan 
Rouzaud-Cornabas, and Thomas Cuypers) each had a baby during the EvoEvo project. To our 
eyes this shows that gender issues were correctly managed. Most partners hired all necessary 
personnel (PhD students, post-docs, engineers, and lab technicians) from the beginning of the 
project, the only exception being Utrecht University who experienced difficulties in hiring a postdoc. 
This resulted in a lower than expected workload in Utrecht during the first year of the project. 
However, these difficulties were overcome when Utrecht University hired a post-doc (Thomas 
Cuypers) and a PhD student (Bram van Dijk) in January 2015, thus correcting this effect. Finally, 
partner 4 (University of York) had management difficulty with two post-docs who successively 
found positions in private companies during their post-doc. This slightly delayed the development 
of EvoMachina, and we adapted the interactions between WP4 and WP5 accordingly. The main 
consequence was that the evolutionary clustering algorithms developed in WP5 was first 
developed in C++ before being implemented and tested in EvoMachina. 

As explained in the DoW, the project work plan was organized in such a way that the 
workpackages dependencies were mainly based on knowledge exchanges (biological knowledge 
between WP1, WP2, and WP4; experimental design and results between WP1 and WP3; 
specifications of the computational model between WP2, WP3 and WP4; EvoEvo strategies 
between WP3 and WP5). These exchanges and represented as horizontal arrows on Figure 1 
(page 6). This was a guarantee of efficient project progress (providing that partners interact 
regularly to exchange the corresponding knowledge – which was ensured by the regular project 
meetings). The two exceptions were the dependencies between WP2 and 3 (model development 
and usage) and WP4 and 5 (computational framework development and usage) – vertical arrows 
on Figure 1. Interaction between WP2 and WP3 was relatively straightforward since partners 1 
and 3 were both strongly involved in these two WPs. Moreover, as explained in the DoW, WP3 
used the model developed in WP2 but also various models developed previously by partners 1 and 
3 – the model used for each in silico experiment being chosen in close collaboration with WP1. 
This enabled us to design many more experiments than what would have been possible with the 
sole Evo2Sim model (e.g., in silico TEV-like experiments were conducted with the Aevol model 
since the fine genome structure has been shown to be a critical features during the wet 
experiments). As explained previously, due to human-resource management issues in UoY, the 
interactions between WP4 and WP5 had to be reorganized. Although the development of 
EvoMachina was delayed, we chose not to delay the development of the WP5 applications (this 
would have severely compromised the outcome of WP5) but to develop a prototype of WP5 
applications independently from the EvoMachina package, and then to test the same algorithm 
within EvoMachina. This was done: ChameleoClust was developed and tested in C++ 
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simultaneously with the development of EvoMachina, and the undelying Chameleoclust algorithm 
was then implemented successfully within this framework. 

List of project deliverables: 

All the project deliverables have been produced and all public deliverables are available on the 
project website (http://www.evoevo.eu/deliverables/). Most deliverables were produced on time; a 
few were delayed to follow the scientific development of the project. 
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D1.1 TEV and E. coli strains for 
robustness analysis 

Published online on 
November 27th 2014 

http://www.evoevo.eu/deliverable-1-1-tev-and-e-coli-strains-for-robustness-
analysis/ 

D1.2 Analysis of robustness in TEV 
and E. coli 

Published online on 
March 25th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-1-2-analysis-of-
robustness-in-tev-and-e-coli-strains/ 

 

D1.3 Analysis of evolvability (part 1) Published online on 
March 25th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-1-3-analysis-of-
evolvability-part-1/ 

D1.4 Analysis of phenotypic 
innovation (part 1) 

Published online on 
March 25th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-1-4-analysis-of-phenotypic-
innovation-part-1/ 

D1.5 Analysis of evolvability (part 2) Published online on 
October 11th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-1-5-analysis-of-evolvability-
part-2/ 

D1.6 Analysis of phenotypic 
innovation (part 2) 

Published online on 
October 11th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-1-6-analysis-of-phenotypic-
innovation-part-2/ 

D2.1 Specifications of the genome-
network model 

Published online on 
July 4th 2014 

http://evoevo.liris.cnrs.fr/deliverable-2-1-specifications-of-the-genome-network-
model/ 

 

D2.2 Genome-network model Published online on 
December 10th 2014 

http://evoevo.liris.cnrs.fr/deliverable-2-2-genome-network-model-source-code/ 

D2.3 Specifications of the population 
model 

Published online on 
July 24th 2014 

http://evoevo.liris.cnrs.fr/deliverable-2-3-specifications-of-the-population-model/ 
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D2.4 Population model Published online on 
May 23th 2015 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-2-4-population-model-
source-code/ 

D2.5 Specifications of the realistic 
network model 

Published online on 
November 26th 2014 

http://evoevo.liris.cnrs.fr/deliverable-2-5-specifications-of-the-realistic-network-
model/ 

D2.6 Realistic-network model Published online on 
May 23th 2015 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-2-6-realistic-network-
model-source-code/ 

D2.7 Description of the modeling 
choices for the integrated model 

Published online on 
February 19th 2015 

http://evoevo.liris.cnrs.fr/deliverable-2-7-specifications-of-the-integrated-
evolutionary-model/ 

D2.8 Integrated evolutionary model Published online on 
May 23th 2015 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-2-8-integrated-
evolutionary-model-source-code/ 

D3.1 Evolution of variability; 
Mechanisms and consequences 

Published online on 
November 3rd 2015 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-3-1-evolution-of-
variability-mechanisms-and-consequences/ 

D3.2 Evolution of robustness; 
Mechanisms and consequences 

Published online on 
October 8th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-d3-2-evolution-of-robustness/ 

D3.3 Evolution of evolvability; 
Mechanisms and consequences 

Published online on 
October 9th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-d3-3-evolution-of-evolvability/ 

D3.4 Evolution of open-endedness; 
Mechanisms and consequences 

Published online on 
October 28th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-d3-4-evolution-of-open-
endedness-mechanisms-and-consequences/ 

D4.1 Computational meta-model 
definition 

Published online on 
May 11th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-4-1-computational-meta-
model-definition/ 
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D4.2 Computational model 
requirements specification 

Published online on 
May 11th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-4-2-computational-model-
requirements-specification/ 

D4.3 A calibrated, tested and 
documented implementation of 

the platform specification 

Published online on 
September 15th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-4-3-computational-run-time-
platform/ 

D4.4 Computational reflective run-
time platform 

Published online on 
November 7th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-4-4-computational-
reflective-run-time-platform/ 

D4.5 Reflective application Published online on 
November 7th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-4-5-reflective-applications/ 

D5.1 Impact obtained from EvoEvo 
mechanisms on data stream 

cluster analysis 

Published online on 
October 26th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-5-1-impact-obtained-from-
evoevo-mechanisms-on-data-stream-cluster-analysis/ 

D5.2 Impact obtained from EvoEvo 
mechanisms on evolution of a 
hardware personal companion 

Published online on 
October 31th 2016 

http://evoevo.liris.cnrs.fr/publication-of-the-deliverable-5-1-impact-obtained-from-
evoevo-mechanisms-on-evolution-of-a-hardware-personal-companion/ 

D6.1 Project website Published online on 
July 8th 2014 

http://evoevo.liris.cnrs.fr/deliverable-6-1-project-website/ 

D6.2 Project communication media Published online on 
July 8th 2014 

http://evoevo.liris.cnrs.fr/deliverable-6-2-project-communication-media/ 

D6.5 Mid-term dissemination report Published online on 
May 23th 2015 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-6-5-mid-term-dissemination-
report/ 

D6.6 Program of the interdisciplinary 
workshop 

Published online on 
September 7th 2016 

http://evoevo.liris.cnrs.fr/publication-of-deliverable-6-6-program-of-the-
interdisciplinary-workshop/ 
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2.7.3. Contribution 2: Dissemination 

Introduction 

EvoEvo is a concept and a term that was coined in a joint publication by partner 1 and 2 (Hindré et 
al., 2012). One of the objectives of the project was to develop the concept, to verify its scientific 
soundness and, ultimately, to disseminate it in at least two scientific communities: evolutionary 
biology and computer science (evolutionary computation and artificial life). The dissemination 
strategy is presented in deliverable D6.5, and includes several dissemination actions. As explained 
in that deliverable, the dissemination actions can be split in two parts: dissemination of the results 
and dissemination of the concepts. Dissemination of the results is mainly a question of scientific 
publications. On that aspect, EvoEvo is a clear success, with 55 international publications in all the 
domains covered by the project, and many further in preparation. The dissemination of the 
concepts is less easy to measure and takes more time. As proposed in the project, our approach 
toward living technologies will be disseminated through videos of our demonstrators and 
availability of software. Videos of EvoMove sessions have been published, and the EvoWave 
software is available on the project website (see sections 2.6.3 and 2.6.4). The EvoMachina 
software is available on github (see section 2.5.3). Finally, to discuss and disseminate the EvoEvo 
concept, we organized two interdisciplinary workshops. Note that the EvoEvo concept proved to be 
more difficult to disseminate than initially expected. This was mainly due to the difficulty of 
distinguishing this concept from that of the concept of Evolvability that has become highly popular 
these last years. It was also due to those search engines that transform “EvoEvo” into “Evo Evo”, 
thus mixing the concept with a welter of irrelevant information. 

Awards and distinctions: 

Sergio Peignier, Christophe Rigotti, Guillaume Beslon (2015) Subspace clustering using evolvable 
genome structure. In: proceedings of GECCO'15, Annual Conference on Genetic and Evolutionary 
Computation. Madrid (Spain), July 2015, pp. 575-582 [Best paper award] 

Jessica Plucain, Antonia Suau, Stéphane Cruveiller, Claudine Médigue, Dominique Schneider, 
Michael Le Gac (2016) Contrasting effects of historical contingency on phenotypic and genomic 
trajectories during a two-step evolution experiment with bacteria. BMC Evolutionary Biology, 
16(1):86 [Recommended by F1000] 

Bram van Dijk (2015) Evolution of differential gene mobility. BioSB 2015 Dutch Bioinformatics & 
Systems Biology conference [Best presentation award] 

Simon Hickinbotham, Susan Stepney (2016) Augmenting Live Coding with Evolved Patterns. In: 
Proceedings of EvoMusArt, 5th International Conference on Computational Intelligence in Music, 
Sound, Art and Design, Porto, Portugal, March 2016, LNCS 9596:31-46 [best paper award 
nominee] 

Tim Hoverd, Susan Stepney. (2016) EvoMachina: a novel evolutionary algorithm inspired by 
bacterial genome reorganisation (abstract). Late Breaking Abstracts, UCNC 2016, Manchester, 
UK, 2pp., [highly commended poster award] 
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Publications of the project: 

1. Abernot J., Beslon G., Hickinbotham S., Peigner S., Rigotti C. (2016) A Commensal 
Architecture for Evolving Living Instruments. In: proceedings of Conference on Computer 
Simulation of Musical Creativity, Huddersfield, United Kingdom, June 2016, 8pp. 

2. Andrews P. S., Stepney S. (2014) Using CoSMoS to Reverse Engineer a Domain Model for 
Aevol. In: Proceedings of CoSMoS workshop, New York, USA, July 2014, pp.61-79. Luniver 
Press 

3. Andrews P. S., Stepney S. (2015) A Metamodel for the Evolution of Evolution. In proceedings 
of ECAL 2015, York, UK, July 2015, pp.621-628. MIT Press 

4. Andrews P. S., Stepney S. (2015) The CoSMoS Domain Experiment Model. CoSMoS 
workshop, York, UK, July 2015 pp.1–8. Luniver Press  

5. Banzhaf W., Baumgaertner B., Beslon G., Doursat R., Foster J. A., McMullin B., Veloso de 
Melo V., Miconi T., Spector L., Stepney S., White R. (2016) Defining and Simulating Open-
Ended Novelty: Requirements, Guidelines, and Challenges. Theory in Biosciences, 
135(3):131-161 

6. Banzhaf W., Beslon G., Doursat R., Stepney S. (2016) Open-Endedness: Definitions and 
Shortcuts. The Second Workshop on Open-Ended Evolution, at ALife 2016, Cancun, Mexico, 
2pp. 

7. Batut B., Beslon G., Knibbe C. (2016). Unexpected genome inflation and streamlining in 
variable environments. Journées ouvertes de Biologie Informatique & Mathématiques 2016, 
June 2016, Lyon, France 

8. Bernet G. P., Elena S. F. (2015) Distribution of mutational fitness effects and of epistasis in the 
5'untranslated region of a plant RNA virus. BMC Evolutionary Biology, BMC Evol. Biol. 15(274) 

9. Beslon G., Liard V., Elena S. F. (2016) Evolvability drives innovation in viral genomes. 2nd 
EvoEvo Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, NL, 6 p. 

10. Biller P., L Guéguen, Knibbe C., Tannier E. (2016) Breaking good: accounting for fragility of 
genomic regions in rearrangement distance estimation. Genome Biology and Evolution, 
8(5):1427-1439 

11. Biller P., Knibbe C., Beslon G., Tannier E. (2016) Comparative genomics on artificial life. In: 
proceedings of CiE 2016 (Computability in Europe), Paris, France, Volume 9709 of the series 
Lecture Notes in Computer Science, pp 35-44 

12. Biller P., Tannier E., Beslon G., Knibbe C. (2016) In silico experimental evolution provides 
independent and challenging benchmarks for comparative genomics. Journées ouvertes de 
Biologie Informatique & Mathématiques 2016, June 2016, Lyon, France, pp. 79-82 

13. Cervera H., Lalić J., Elena S. F. (2016) Efficient escape from local optima in a highly rugged 
fitness landscape by evolving RNA virus populations. Proceedings of the Royal Society, 
Biological Sciences, 283: 20160984.  
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14. Cervera H., Elena S. F. (2016) Genetic variation in fitness within a clonal population of a plant 
RNA virus. Virus Evolution, 2(1): vew006. 

15. Cervera H., Lalić J., Elena S. F. (2016) Effect of host species on topography of the fitness 
landscape for a plant RNA virus. Journal of Virology, 90(22):10160-10169 

16. Colizzi E. S., Hogeweg P. (2016) Mutational load is ameliorated by increased transcriptional 
load-associated mutations, if these are biased towards duplications and deletions. 2nd EvoEvo 
Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, NL, 5 p. 

17. Cuevas J. M., Willemsen A., Hillung J., Zwart M. P., Elena S. F. (2015) Temporal Dynamics of 
Intrahost Molecular Evolution for a Plant RNA Virus. Molecular Biology and Evolution, 
32(5):1132-1147 

18. Cuypers T. D., Hogeweg P. (2015) Endless evolutionary paths to Virtual Microbes.Workshop, 
First EvoEvo Workshop, satellite workshop of ECAL2015, July 2015, York, UK, 1 p. 

19. Elena S. F. (2016) Evolutionary transitions during RNA virus experimental evolution. 
Philosophical Transactions of the Royal Society, Biological Sciences, 371(1701):20150441 

20. Elena S. F. (2016) Local adaptation of plant viruses: lessons from experimental evolution. 
Molecular Ecology, [Epub ahead of print]. PMID: 27612225. 

21. Fischer S., Bernard S., Beslon G., Knibbe C. (2014) A model for genome size evolution. 
Bulletin of Mathematical Biology, 76(9):2249-2291 

22. Großkopf T., J Consuegra, J Gaffé, JC Willison, RE Lenski, OS Soyer, Schneider D. (2016) 
Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of 
bacteria in a long-term evolution experiment. BMC Evolutionary Biology, 16(1):163 

23. Hickinbotham S., Stepney S. (2015) Conservation of matter increases evolutionary activity. In 
proceedings of ECAL 2015, York, UK, July 2015, pp. 98-105 

24. Hickinbotham S., Stepney S. (2015) Environmental bias forces parasitism in Tierra. In 
proceedings of ECAL 2015, York, UK, July 2015, pp. 294-301 

25. Hickinbotham S., Stepney S. (2016) Bio-Reflective Architectures for Evolutionary Innovation. 
In proceedings of ALife 2016, Cancun, Mexico, July 2016, pp. 192-199 

26. Hickinbotham S., Stepney S. (2016) Augmenting Live Coding with Evolved Patterns. In: 
Proceedings of EvoMusArt, 5th International Conference on Computational Intelligence in 
Music, Sound, Art and Design, Porto, Portugal, March 2016, LNCS 9596:31-46  

27. Hickinbotham S., Hogeweg P. (2016) Evolution towards extinction in replicase models: 
inevitable unless... 2nd EvoEvo Workshop, satellite workshop of CCS2016, Sep 2016, 
Amsterdam, NL, 5 p. 

28. Hillung J., Cuevas J. M., Elena S. F. (2015) Evaluating the within-host fitess effects of 
mutations fixed during virus adaptatyion to different ecotypes of a new host. Philosophical 
Transactions of the Royal Society, Biological Sciences, 370(1675):20140292 
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29. Hillung J., García-García F., Dopazo J., Cuevas J. M., Elena S. F. (2016) The transcriptomics 
of an experimentally evolved plant-virus interaction. Scientific Reports, 6:24901 

30. Hoverd T., Stepney S. (2016) EvoMachina: a novel evolutionary algorithm inspired by bacterial 
genome reorganisation. Late Breaking Abstracts, UCNC 2016, Manchester, UK, 2pp., 2016 

31. Hoverd T., Stepney S. (2016) EvoMachina: a novel evolutionary algorithm inspired by bacterial 
genome reorganisation. 2nd EvoEvo workshop, Amsterdam, Netherlands. 

32. Knibbe C., Parsons D. (2014) What happened to my genes? Insights on gene family dynamics 
from digital genetics experiments. In proceedings of ALIFE 14, 14th Intl. Conf. on the 
Synthesis and Simulation of Living Systems.  New-York (US), July 2014, pp. 33-40 

33. Lalić J., Elena S. F. (2015) The impact of high-order epistasis in the within-host fitness of a 
positive-sense plant RNA virus. Journal of Evolutionary Biology 28(12):2236-2247 

34. Peigner S., Rigotti C., Beslon G. (2015) Subspace Clustering for all Seasons. First EvoEvo 
Workshop, satellite workshop of ECAL2015, July 2015, York, UK, 1 p.  

35. Peignier S., Rigotti C., Beslon G. (2015) Subspace clustering using evolvable genome 
structure. In: proceedings of GECCO'15, Annual Conference on Genetic and Evolutionary 
Computation. Madrid (Spain), July 2015, pp. 575-582 

36. Plucain J., Suau A., Cruveiller S., Médigue C., Schneider D., Le Gac M. (2016) Contrasting 
effects of historical contingency on phenotypic and genomic trajectories during a two-step 
evolution experiment with bacteria. BMC Evolutionary Biology, 16(1):86 

37. Raeside C., Gaffé J., Deatherage D. E., Tenaillon O., Briska A. M., Ptashkin R. N., Cruveiller 
S., Médigue C., Lenski R. E., Barrick J. E., Schneider D. (2014) Large chromosomal 
rearrangements during a long-term evolution experiment with Escherichia coli. mBio 5:e01377-
14 

38. Rocabert C., Knibbe C., Beslon G. (2015) Towards an Integrated Evolutionary Model to Study 
Evolution of Evolution. First EvoEvo Workshop, satellite workshop of ECAL2015, July 2015, 
York, UK, 15 p. 

39. Rocabert C., Knibbe C., Consuegra J., Schneider D., Beslon G. (2016) Environmental Driving 
of Bacterial Diversification in In Silico Experimental Evolution. Evolutionary systems biology: 
from model organisms to human disease workshop, Cambridge (UK), March 2016, 1 p. 

40. Rocabert C., Knibbe C., Consuegra J., Schneider D., Beslon G. (2016) In Silico Experimental 
Evolution Highlights the Influence of Environmental Seasonality on Bacterial Diversification. 
2nd EvoEvo Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, NL, 4 p. 

41. Rudan M., Schneider D., Warnecke T., Krisko A. (2015) RNA chaperones buffer deleterious 
mutations in E. coli. eLife, 4:e04745 

42. Rutten J., Hogeweg P., Beslon G. (2016) Evolution of mutator populations in constant 
environments. 2nd EvoEvo Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, 
NL, 5pp. 
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43. Stepney S., Beslon G. (2016) Open-Endedness: Definitions and Shortcuts. 2nd EvoEvo 
Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, NL, 6pp. 

44. Takeuchi N., Kaneko K., Hogeweg P. (2016) Evolutionarily stable disequilibrium: endless 
dynamics of evolution in a stationary population. Proceedings of the Royal Society, Biological 
Sciences, 283(1830):20153109 

45. Taylor T., Bedau M., Channon A., Ackley D., Banzhaf W., Beslon G., Dolson E., Froese T., 
Hickinbotham S., Ikegami T., McMullin B., Packard N., Rasmussen S., Virgo N., Agmon E,. 
Clark E., McGregor S., Ofria C., Ropella G., Spector L., Stanley K. O., Stanton A., Timperley 
C., Vostinar A., Wiser M. (2016) Open-Ended Evolution: Perspectives from the OEE1 
Workshop in York. Artificial Life, 22(3):408-423 

46. Taylor T., Auerbach J. E., Bongard J., Clune J., Hickinbotham S., Ofria C., Oka M., Risi S., 
Stanley K. O., Yosinski J. (2016) WebAL Comes of Age: A review of the first 21 years of 
Artificial Life on the Web. Artificial Life, 22(3):364-407 

47. Tenaillon O., Barrick J. E., Ribeck N., Deatherage D. E., Blanchard J. L., Dasgupta A., Wu G. 
C., Wielgoss S., Cruveiller S., Médigue C., Schneider D., Lenski R. E. (2016) Tempo and 
mode of genome evolution in a 50,000-generation experiment. Nature, 536(7615):165-170 

48. Tromas N., Zwart M. P., Forment J., Elena S. F. (2014) Shrinkage of genome size in a plant 
RNA virus upon transfer of an essential viral gene into the host genome. Genome Biology and 
Evolution, 6(3):538-550 

49. Vadée-Le-Brun Y., Rouzaud-Cornabas J., Beslon G. (2015) Epigenetic inheritance speeds up 
evolution of artificial organisms. In proceedings of ECAL 2015, York, UK, July 2015, pp. 439-
446 

50. Vadée-Le-Brun Y., Rouzaud-Cornabas J., Beslon G. (2015) In Silico Experimental Evolution 
suggests a complex intertwining of selection, robustness and drift in the evolution of genetic 
networks complexity. In proceedings of ALife 2016, Cancun, Mexico, July 2016, pp. 172-179 

51. van Dijk B., Hogeweg P. (2016) In silico gene-level evolution explains microbial population 
diversity through differential gene mobility. Genome Biology and Evolution, 28;8(1):176-188 

52. van Dijk B., Cuypers T. D., Hogeweg P. (2016) Evolution of r- and K-selected species of 
Virtual Microbes: a case study in a simple fluctuating 2-resource environment . 2nd EvoEvo 
Workshop, satellite workshop of CCS2016, Sep 2016, Amsterdam, NL, 5 p. 

53. Willemsen A., Zwart M. P., Elena S. F. (2016) High virulence does not necessarily impede viral 
adaptation to a new host: A case study using a plant RNA virus. bioRxiv 060137; doi: 
http://dx.doi.org/10.1101/060137 

54. Willemsen A., Zwart M. P., Higueras P., Sardanyés J., Elena S. F. (2016) Predicting the 
stability of homologous gene duplications in a plant RNA virus. Genome Biology and 
Evolution, 8(9):3065-3082. 
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55. Willemsen A., Zwart M. P., Ambrós S., Carrasco J. L., Elena S. F. (2016) 2b or not 2b: 
Experimental evolution of functional exogenous sequences in a plant RNA virus. bioRxiv 
079970; doi: http://dx.doi.org/10.1101/079970 

56. Willemsen A., Zwart M. P., Tromas N., Majer E., Daròs J. A., Elena S. F. (2016) Multiple 
barriers to the evolution of alternative gene orders in a positive-strand RNA virus. Genetics, 
2(4):1503-1521 

57. Wu B., Zwart M. P., Sanchez-Navarro J. A., Elena S. F. (2016) Within-host evolution of 
segments ratio for the tripartite genome of Alfalfa mosaic virus. bioRxiv 066084; doi: 
http://dx.doi.org/10.1101/066084 

Publications in preparation (non-exhaustive list): 

Batut B., Beslon G., Knibbe.: Genome inflation and streamlining in variable environments. 

Beslon G., Liard V., Elena S. F.: Evolvability drives innovation in viral genomes 

Clark E. B., Hickinbotham S., Stepney S.: Semantic closure demonstrated by the evolution of 
universal constructor in stringmol 

Consuegra J., Plucain J., Gaffé J., Lenski R. E., Hindré T., Schneider D.: Molecular genetics of a 
new ecological opportunity exploitation during long-term bacterial sympatric adaptive diversification 

Cuypers T. D., Rutten J. P., Hogeweg P.: Mutate or Regulate: evolutionary strategies along a 
continuum of ecological time scales 

Hickinbotham S., Hogeweg P.: Evolution towards extinction in replicase models: inevitable 
unless... 

Hoverd T., Stepney S.: EvoMachina: a novel evolutionary algorithm based on a machine meta-
model 

Lamrabet O., Plumbridge J., Lenski R. E., Hindré T., Schneider D.: Dynamics of altered regulatory 
networks in bacteria 

Knibbe C, Schneider D., Beslon G.: Evolution without (point) mutations 

Meijer J., van Dijk B., Cuypers T., Hogeweg P.: The role of HGT in the evolution of genomes, 
transcriptomes, metabolomes and ecosystems 

Peignier S., Rigotti C., Beslon G.: Weight-based search to find clusters around medians in 
subspaces (submitted to SIAM DM) 

Rocabert C., Knibbe C., Consuegra J., Schneider D., Beslon G.: Beware Batch Culture: 
Seasonality and Niche Construction Predicted to Favor Bacterial Adaptive Diversification 
(submitted to PLoS Computational Biology) 

Rocabert C., Bernard S., Knibbe C., Beslon G.: Applying phenotypic noise to the Fisher’s 
geometric model 
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Rutten J. P., Hogeweg P., Beslon G.: Adapting the engine to the fuel: hypermutator populations 
can escape the mutational burden by reorganizing their genome structure 

van Dijk B., Cuypers T. D., Hogeweg P.: Evolution of the stringent response in virtual microbes 

Wielgoss S., Hindré T., Lenski R. E., Schneider D.: Long-term evolution of global gene expression 
through pervasive changes in epistatic interactions within regulatory networks. 

2.7.4. Organization of two interdisciplinary workshops in 2015 and 2016 

One of the central claims of the project is that EvoEvo is a multidisciplinary concept that could 
interest both biology (evolutionary biology, microbiology, virology…) and also computer science. In 
the EvoEvo project we aimed at proposing new evolutionary algorithms that integrate evoevo 
properties. This interdisciplinary nature of the concept makes it difficult to disseminate widely, 
which is why we proposed to organize two interdisciplinary workshops during the project. The aim 
of the EvoEvo workshops was to seek for a unified theory of Evolution of Evolution by studying its 
biological mechanisms, evolutionary consequences and possible applications to bioinspired 
computation. In order to facilitate interdisciplinary dissemination, we chose to organize both 
workshops as satellite events of highly interdisciplinary conferences, rather that as independent 
events. 

First EvoEvo workshop (York, July 2015) 

The first EvoEvo workshop was held on 24 July 2015 as a satellite workshop of the European 
Conference on Artificial Life (ECAL 2015) in York UK. We welcomed approximately 35 attendees 
from various fields. The program was composed of invited speakers, long talks (from long 
communications) and short talk (from extended abstracts). The invited speakers were Lee 
Altenberg (Vienna University, Austria) who gave a talk on the origin of evolvability3 and Jean-
Baptiste Mouret (Nancy University, France). The contributions were given by Anton Crombach 
(Barcelona, Spain), Charles Rocabert (INRIA, France), Ben Kovitz (Indiana University, 
Bloomington, USA), Yifei Wang (University of Bath, UK), Thomas Cuypers (Utrecht University, NL), 
Tim Taylor (University of York, UK), and Sergio Peignier (INRIA, France). More information and 
material is available from the workshop website (http://evoevo.liris.cnrs.fr/evoevo-2015/). 

The workshop was a real success with very interesting discussions and initiation of possible 
collaborations. As one of the participants noted, the workshop was the occasion to discuss 
concepts (e.g., “cascading design”) that could not be discussed elsewhere or not in the same way. 

Second EvoEvo workshop (Amsterdam, September 2016) 

The second EvoEvo workshop was held on 20 September 2016 as a satellite workshop of the 
Conference on Complex Systems (CCS 2016) in Amsterdam. Compared to the first EvoEvo 
workshop, which aimed at discussing the EvoEvo concept with the community, this second EvoEvo 
workshop mainly aimed at presenting the results of the EvoEvo project to the scientific community. 
The workshop was organized a month before the end of the project, and the CCS conference 
offered us the opportunity to disseminate our results to a large interdisciplinary audience including 
computer scientists, physicists, mathematicians and biologists. Consequently, the workshop 

                                                
3 Note that Lee Altenberg is one of authors who popularized the concept of evolvability. 
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program was mainly composed of invited speakers and EvoEvo speakers presenting the 
interdisciplinary results of the project. 

The three invited speakers were: 

• Eörs Szathmary4 (Parmenides Center for the Conceptual Foundations of Science, 
Pullach/Munich, Germany): Evolution of Evolvable Systems 

• François Blanquart (Imperial College): Epistasis and the structure of fitness landscapes: are 
experimental fitness landscapes compatible with Fisher’s geometric model? 

• Nobuto Takeuchi (University of Tokyo): The origin of genes through spontaneous symmetry 
breaking 

Paulien Hogeweg (Utrecht University) gave an introduction talk to present the concept of “Evolution 
of Evolution” (“What’s EvoEvo?”) and the results of the EvoEvo projects were presented in 9 
contributions (speaker underlined): 

1. Guillaume Beslon (INRIA), Vincent Liard (INRIA), Santiago Elena (CSIC): Evolvability 
drives innovation in viral genomes 

2. Enrico Sandro Colizzi (Utrecht University), Paulien Hogeweg (Utrecht University): 
Mutational load is ameliorated by increased transcriptional load-associated mutations, if 
these are biased towards duplications and deletions 

3. Jacob Pieter Rutten (INRIA), Paulien Hogeweg (Utrecht University), Guillaume Beslon 
(INARI): Evolution of mutator populations in constant environments 

4. Susan Stepney (University of York), Guillaume Beslon (INRIA): Open-Endedness: 
Definitions and Shortcuts 

5. Charles Rocabert (INRIA), Carole Knibbe (INRIA), Jessica Consuegra (UGA), Dominique 
Schneider (UGA), Guillaume Beslon (INRIA): In-silico experimental evolution highlights the 
influence of environmental seasonality on bacterial diversification 

6. Bram van Dijk (Utrecht University), Thomas Cuypers (Utrecht University), Paulien Hogeweg 
(Utrecht University): Evolution of r- and K-selected species of Virtual Microbes: a case 
study in a simple fluctuating 2-resource environment 

7. Tim Hoverd (University of York), Susan Stepney (University of York): EvoMachina: a novel 
evolutionary algorithm inspired by bacterial genome reorganisation 

8. Simon Hickinbotham (University of York), Paulien Hogeweg (Utrecht University): Evolution 
towards extinction in replicase models: inevitable unless… 

9. Jonas Abernot (INRIA), Simon Hickinbotham (University of York): Physical interaction with 
automated music composition platforms 

The extending abstracts of these contributions are all available on the workshop website 
(http://evoevo.liris.cnrs.fr/evoevo-2016/). Of these 9 contributions, 6 were direct collaborations 
between two partners of the project (see Figure 12). The full paper of one of these abstracts (4) 
has been published (Banzhaf et al 2016), and all the other abstracts are currently being extended 
for submission to scientific journals. 

                                                
4 Eörs Szathmary Co-leads the FP7-ideas-ERC project EvoEvo (Evolution of Evolvable Systems) 
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Figure 12: graph of the EvoEvo contributions to the second EvoEvo workshop 

2.7.5. Internal dissemination 

As planned in the DoW we organized frequent tutorials within the consortium to facilitate 
interdisciplinary exchanges. The objective of these tutorials was to ensure that all members of the 
consortium had a basic knowledge in all the domains covered by the project and were able to 
understand (to some degree) the experiments, developments and results of the other members. 

These tutorials took place during the general project meetings. During the project we organized the 
following sessions: 

• October 28th 2013: Susan Stepney and Paul Andrews (York) gave a 1.5h lecture on the 
CoSMoS approach. 

• May 22th 2014: Santiago Elena (CSIC) gave a 3h lecture on experimental evolution and 
virus evolution. 

• May 23th 2014: Kirsten ten Tusscher (Utrecht) and Guillaume Beslon (INRIA) gave a 1h 
lecture on the “Pearls-on-a-String” (PoaS) and “sequence” formalisms in digital genetics. 

• October 27th 2014: Susan Stepney (York) gave a 1.5h lecture on unconventional computing 
• October 28th 2014: Carole Knibbe (INRIA) gave a 1.5h lecture on the aevol platform and its 

use for in silico experimental evolution 
• July 25th 2015: Santiago Elena (CSIC) gave a 3h lecture on the biochemical structure of the 

Tobacco etch virus (TEV) 
• February 23th 2016: CSIS organized a visit of the greenhouse facilities 

2.8. Conclusion 
Given the ambitions of the EvoEvo project (develop new knowledge in life science, computational 
biology and ICT, and link these three domains), we are proud to say that the project is a clear 
success: All the technical objectives of the project have been fulfilled (as shown by section 2.2 to 
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2.6) and the interdisciplinary collaboration has been particularly efficient. The applications 
developed in WP5 (EvoWave and EvoMove) directly benefit from the knowledge produced by WP1 
and WP3 (the so-called “EvoEvo strategies”) while WP3 itself has benefited from the model 
development of WP2. WP4 has successfully produced a general algorithmic framework 
(EvoMachina) that makes it possible to use EvoEvo strategies in other applications. WP3 and WP1 
interacted efficiently and we have been able to replicate in silico some of the experimental designs 
of WP1. On all these aspects, many of the collaborations are still active – and will continue – with 
numerous publications in preparation (see section 2.7.3). 

A hallmark of the quality of the exchange during the project is that, although we did not plan explicit 
interactions between WP3 and WP4, in practice, some of the EvoEvo strategies identified in WP3 
were directly injected in task 4.3 with an exciting result: while self-modifying codes systematically 
went to extinction in the original stringmol design, the introduction of spatial interactions (an evoevo 
strategy identified in WP3) permitted a stabilization of the population, and hence a powerful 
evolution on the long term. 

3. General insights on the EvoEvo process 

3.1. Introduction  
Variability, robustness and evolvability were considered as independent concepts in the beginning 
of the project. Our research has elucidated that these properties are strongly entangled in evolving 
systems. Indeed, they mutually serve as mechanism and consequence of each other. 

In this final summary of the results we focus on the most important mechanisms for EvoEvo that 
we discovered and elucidated in our research. These are: (i) genome structuring, (ii) shaping the 
genotype-phenotype mapping, and (iii) long term information integration in (multi-level) evolution. 

3.2. Evolution of genome structure  
The first mechanism for EvoEvo is the evolution of the size and the structure of the genome. The 
size of the genome determines the dimensionality of the evolutionary search space, the overall 
mutation rate as well as the ratio of different mutational operators. Moreover, the structure of the 
genome determines the genomic changes these mutational operators can achieve. 

We first look at these entangled processes from the point of the genetic operators, and then from 
the point of genome structure. 

3.2.1. Roles of genetic operators in evolution of evolution 

One of the far-reaching fundamental insights emerging from our research is that different 
mutational operators, i.e. different ways of generating variation, have different roles in evolution, as 
well as in evolution of evolution. 

While most evolutionary theory in biology, as well as in computer science, has focused on point 
mutations and crossovers, we have highlighted the role of mutations which structure the genome, 
in particular large and small duplications and deletions, which change the size of the genome, and 
thereby the dimensionality of the fitness landscape and search space. We have shown that this 
increases the effectiveness of evolutionary search in several ways. Typically, successful 



EvoEvo Project 

 

Deliverable 6.8 
FP7-ICT FET Proactive EVLIT program Final report 
Project reference: 610427 Version 2.4 

 

   Page 63 of 77 

evolutionary adaptation involves early genome expansion, followed by streamlining, whereas in the 
absence of genome expansion less fitness is obtained in the end: the gradual reduction of the 
dimensionality of the search space facilitates optimization. Likewise, these mutational operators 
open up new dimensions and thereby mediate innovation to escape local optima. 

Apart from improving evolutionary optimization, these mutational operators are also instrumental in 
evolution of evolution in several ways. First, the relative frequency of genomic changes by various 
mutational operators is modified automatically through their effect on genome size: whereas 
frequency of changes by point mutations scale linearly with genome size, the frequency scales 
super-linearly for structural mutations. The effect on fitness of point mutations and duplications and 
deletions change the structure of the fitness landscape. 

Strikingly, through these processes the deleterious effects of high point mutation rates can be 
compensated by an increase of duplication-deletion mutations, i.e. by making total mutation rate 
even higher. Evolutionary response to increased point-mutation rates is to increase (especially 
large) duplications and deletions and thereby recover, or even improve fitness. This is a very clear 
demonstration of EvoEvo, shedding new light on the classical problem of the information threshold. 
This result is independent of a particular model: apart from the in silico model of E. coli-like mutator 
strains, it also emerged in a quite different model of transcription-induced mutations in yeast. Both 
these examples demonstrate the effect of duplication and deletion genetic operators on all 
hallmarks of EvoEvo: variability, robustness and evolvability. 

In conclusion, different genetic operators have quite different effects on the evolutionary process. 
Only recently has the prevalence of duplications and deletions in biological evolution become 
known: our research has explained their important role in evolution. 

A strong recommendation derived from our research for both biological evolutionary theory as well 
as for the practice of evolutionary computation is to incorporate a rich set of mutational operators, 
and to allow for a flexible genome size. To this end, EvoMachina provides a range of evolutionary 
operators, and supports user-inclusion of more. It also supports a flexible genome size. 

3.2.2. Evolution of genome structure and the role of non-coding sequences 

Structuring of genomes goes beyond the size structuring discussed above, and so does its impact 
on evolution. First of all, apart from point mutations and duplication and deletions, translocations 
and inversions play a role in arranging the parts of the genome and thereby the DNA fragments 
which can be duplicated/deleted. Long-term selection can then lead to genome structuring, thereby 
biasing mutation to increase robustness and/or evolvability. For example, even given a certain 
genome size, and given a certain phenotype (fitness), the ratio between the size of genome coding 
for proteins, regulatory sequences and non-coding junk sequences can vary, and this impacts on 
the evolutionary process. For example, the in silico E. coli-like mutator strain not only increased its 
genome size but also structured the genome so as to decrease the length of the coding sequences 
and increase the length of the non-coding sequences. Despite the increased mutation rate, this 
structuring allowed neutrality (robustness) to remain the same, whilst allowing phenotypic 
variability, and thereby selection pressure, to increase, by an increase of large duplications and 
deletion; thereby high fitness could be maintained. Increasing the amount of non-coding 
sequences also increases the chance that mutational operators other than point mutations destroy 
coding sequences. 
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In the Aevol platform and in the Evo2Sim platform, non-coding sequences are explicitly 
implemented. This is not the case in e.g. the virtual cell and virtual microbe platforms. Nevertheless 
similar effects can be observed, mediated e.g. by genes of minimal effect. Further genome 
structuring occurs, as more details of the mechanism of the genetic operators are included. For 
example, when duplications/deletions are mediated by transposon-like mechanisms, hotspots for 
double stranded breaks are generated, which localize the occurrence of subsequent mutations. In 
this way, mutations can be biased to particular effects, and thereby increase evolvability. 

In conclusion, genome structuring, mediated by a plethora of mutational operators, is a powerful 
mechanism for EvoEvo. It helps explaining the recent observations of very fast adaptation to novel 
environments in experimental evolution. 

3.3. Evolution of the genotype-to-phenotype (GP) map 

The second import mechanism for evolution of evolution is the evolution of the GP map. Whereas 
the evolution of genome structuring influences the amount and types of mutations that occur, the 
evolution of the GP map influences what fitness effect these mutations have. In other words the 
evolution of the GP map shapes the mutational neighbourhood at the phenotype level. 

A profound general insight derived from our research is the propensity to evolve to a U shaped 
mutational neighbourhood. That is, there is an overrepresentation of neutral mutants and an 
overrepresentation of strongly deleterious mutations, whereas slightly deleterious mutations are 
minimized. This U shape increases robustness in two ways, i.e. by high neutrality (which increases 
evolvability) and by high selection. It goes beyond the more traditional conceptualization of 
robustness in terms of flat or steep landscapes, by combining both. The U shape can be skewed in 
either direction, and tuning the shape is a powerful mechanism of EvoEvo. Note that the U shape 
can also be reinforced by the genome structuring, discussed above. 

Moreover, the evolution of the mutational neighbourhood goes beyond this general, qualitative 
effect. The particular phenotypic/functional properties of mutants, distinct from those of the focal 
(master) phenotype, evolve through the evolution of the GP map. A striking example of this 
emerged in the evolution of RNA sequences at high mutation rates, where a whole ecosystem of 
different functional types emerged from the close mutational neighbourhood of one particular 
master sequence. In that case only point mutations were incorporated, demonstrating in that case 
only evolution of the GP map was involved. In other words, the evolution of the mutational 
neighbourhood can result in non-random random mutations, in the sense that there is a bias to 
particular phenotypic changes, despite the randomness of the mutations at the genome level. 

More generally, both the evolved GP map and the evolved genome structure shape the mutational 
neighbourhood. As mentioned above, long-term evolution can thereby enable fast evolutionary 
adaptation to novel environments. 

A powerful mechanism for shaping the mutational neighbourhood is through gene regulation. Gene 
regulatory networks have multiple attractors, i.e. the GP map is a one-to-many map. Mutations can 
lead to changes in the domain of attraction of these, and/or the loss or gain of attractors, and 
thereby mediate fast, particular change as well as innovations. Moreover, gene regulation allows 
for plasticity, i.e. adaptation to changing environmental conditions without mutations, operating on 
a fast timescale. Obviously such plasticity is an evolved property of the GP map. We found that 
evolved regulation relative to one type of environmental change greatly enhanced the evolvability 
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to novel other types of environmental changes. Repeated occurrence of the other types of changes 
further enhanced evolvability. If the latter type of environmental changes occurred frequently 
enough, eventually plasticity relative to these also evolved. Strikingly, evolution of evolvability was 
much faster than evolution of plasticity for intermediate and low frequency changes, and led to very 
similar average fitness over time. Thus, evolvability is a viable alternative to regulation to cope with 
variable environments. 

We conclude that evolution of the GP map mediates the evolution of robustness and evolvability in 
various ways, where evolved robustness to mutations or to environmental changes enhances 
evolvability, which in itself enhances robustness. A prerequisite for the evolution of the GP map is 
redundant coding. 

A strong recommendation derived from this project for biology is to include evolutionary 
consideration in the study of e.g. gene regulatory network on top of direct functional 
considerations, and for the practice of evolutionary computation to use such redundant mapping. 

The current release of EvoMachina (v2) does not provide direct support for the inclusion of gene 
regulatory networks.  However, its conceptual model and architecture have been designed to 
facilitate the incorporation of such facilities in future versions. 

3.4. Multilevel evolution and long-term information integration 

Long-term information integration has been a long-term taboo for explaining what has evolved, 
because without explicit modelling it invites just so stories. Moreover, classical evolutionary models 
in which evolution is limited to modifying allele frequencies, or few parameters, do not allow long-
term information integration.  

Nevertheless EvoEvo can only emerge when the evolutionary process integrates information over 
time, and the models we studied indeed do so. The processes described above, of genome 
structuring and redundant coding, allow for long-term retention of evolved structures beyond what 
is functional at the moment. Spatial embedding facilitates long-term information integration, 
because multiple local sub-populations compete, introducing multiple evolutionary timescales. 

Eco-evolutionary models in which interacting replicating entities co-evolve, self-organize into 
spatial patterns with a dynamics of their own, which behave as higher level evolving entities. 
Selection pressures on the basic replicators and the higher-level entities can be in conflict, and in 
order to survive some ’compromise’ has to be reached, often leading to counter-intuitive results, 
like e.g. the evolution of early death. Even more interestingly, it can lead to more complex 
replication mechanisms, e.g. to the evolution of DNA in the RNA world. In other words, the 
automatic generation of higher levels of evolution is instrumental for major transitions in evolution, 
and can be seen as stepping-stones for open-ended evolution. 

A strong recommendation derived from our studies for evolutionary computation is to embed 
populations in space, as it improves even simple evolutionary search. Moreover, exploiting long 
term information integration by using sparse fitness evaluation, in which subproblems co-evolve 
with solutions, can improve evolutionary search. 
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To this end, EvoMachina provides support for a range of spatial models, including the traditional 
2D toroidal grid. Its model is sufficiently general to support any user-defined hierarchical 
arrangements of space. 

4. General insights on living technologies 

4.1. Introduction 
The aim of EvoEvo was to addresses target outcome (a) of the EVLIT objectives: 

Empirical, theoretical and synthetic approaches that define the key bio-inspired 
principles that drive future living technologies and the environment to use them in a 
controlled way. 

In the first part of this report, we described how we studied – and used – EvoEvo strategies to 
develop software systems able to change their own process and conditions of application through 
indirect evolution. We focused on the ability of evolution to evolve not only the phenotype of an 
individual (through mutations at the genome level) but also to evolve the genotype-to-phenotype 
mapping of this individual, leading to second-order evolution that later-on favours evolution. 

In the DoW of the EvoEvo project, we acknowledged that the roadmap toward “Living 
Technologies” still contains many terrae incognita and that, “nobody really knows what these 
technologies will look like, how they will be implemented (will it be software, hardware, “wetware” 
technologies?) nor what they will be useful for (will they complement extant technologies or replace 
them?)”. That is why we here want to address specifically the question of what such technologies 
could be – at least in the context of software systems, since in EvoEvo we are not interested in 
wet-ware technologies. In this context, the present section describes two proposals that emerged 
during the EvoEvo project. Both proposals address the questions of interaction with living 
technologies: In section 4.2 (The commensal architecture) we propose a way to organize software 
systems such that some elements use living technologies while others are more classical – 
specified – systems. In section 4.3 (Evolving a personal “living” companion) we claim that the 
performances of our EvoMove system is mainly due to its close integration with the system’s user 
and that such a close integration is a key property for the development of useful living 
technologies. 

4.2. The commensal architecture 
One of the core universal properties of living beings is their autonomy. Even if some forms of 
cooperation or altruism can be observed in nature, every biological system is fundamentally selfish 
and cooperation can only emerge when multiple levels co-evolve, the selfishness of some 
constraining the cooperativeness to others (like for instance in kin selection in the RNA-model – 
see section 3.4). Now, one of the core universal properties of technology is its controllability – non-
controllable technologies being only allowed in multi-level technologies, the controllability of some 
level constraining the non-controllability of others (like, for instance, in an internal-combustion 
engine). 

These two antagonistic properties immediately conflict when one wants to design living 
technologies. As discussed in deliverable D3.4, they also immediately conflict when one wants to 
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design open-ended technologies: if open-ended systems are to continuously produce novelty, how 
can they be designed? In other words, when designing living technologies, one of the central 
problems is to design a system that is autonomous enough to surprise its user (by producing 
novelties) and, at the same time, is rational enough to serve the goals it has been built for (as a 
technology). Since the very beginning of this project, this tension has been at the heart of EvoEvo: 
if autonomy is one of the core properties of life, how can a technology be simultaneously alive and 
controllable?  

As said above, biological systems can be cooperative or altruistic providing they are embedded in 
higher/lower levels of evolution that constrain them. We propose here a bio-inspired approach to 
resolve the autonomy v. controllability conundrum. We called this approach “commensal 
computation” (Abernot et al., 2016). In biology a commensal (from the Latin cum mensa – at the 
same table) interaction is a form of mutualism between two organisms where the association is not 
detrimental but not obviously beneficial to the partners (Hooper and Gordon, 2001). The idea of 
commensal computation is based on one of the main functions of the gut microbiota: nutrient 
processing. Gut microbes degrade ingested substances that would otherwise be non-digestible or 
even harmful to the gut (Hooper et al., 2002). This role enables the organism to uptake nutrients 
originating from a wider variety of sources than would otherwise be the case. Gut microbes pre-
process the complex flow of nutrients and transfer the results to their host organism, helping it to 
regulate its feeding and to extract specific nutrients. 

Importantly, while doing so, the microbiota lives their own lives, and change and evolve according 
to their environment, i.e., according to what the host eats. In addition, the nutrient processing by 
the microbiota enables the host organism to gain resources it uses to survive. The commensal 
association of the microbiota and the host contains a part of autonomy (the microbes) and a part of 
control (the host). 

We propose to organise living computational system following the manner in which host and 
microbiota are engaged in a mutualistic association. In commensal computation, the complex data 
(e.g., data generated by the sensor networks) are pre-processed by a virtual microbiome that 
transforms them in digestible data that the processing system can use. Such an architecture differs 
from classical pre-processing-processing in that here the pre-processing is performed by an 
evolving community of virtual bacteria that uptake data, transform them in recognisable objects 
(symbols, clusters, classes...) and feed them to the main processing system. In the context of the 
EvoEvo project, we used a subspace-clustering layer to implement the commensal level: virtual 
bacteria evolve subspace classifiers and send the result to the processing layer (see section 
2.6.2). The interest of subspace classification here is that it enables the sensor network (or more 
generally the source of data) to change its dimensionality (e.g., adding/removing sensors) without 
causing a complete failure of the classification: new dimensions can be dynamically added to the 
system and will (or will not) be integrated to the clustering depending on their pertinence with 
regards to the existing clusters and to the data. 

4.3. Evolving a personal “living” companion 
When applied to our music generation system based on motion sensors, the commensal 
architecture results in a host fed by motion data and producing music, and a bacterial community 
that pre-processes the motion data, helping the host to interpret the moves. Both organisms thus 
“eat at the same table” (the motion) and co-evolve. The music produced by the host depends on 
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the command objects produced by the virtual bacteria. The motion fed to the bacteria depends on 
the movements the user makes in reaction to the music they hear. 

Thus, this system creates a feedback loop including the human user. This principle is illustrated in 
Figure 13. One iteration of the loop is run approximately every second. This timing is short enough 
to allow interaction. Contrary to most software where the human is acting on a system, here the 
user is acting in a system. They do not have full freedom about what sounds will be produced, but 
they can influence it. They have to decide how they react to what could be called “proposals” from 
the system, and this decision changes the shape of what the system produces next. And contrary 
to most of music software, the output of the system is not only the sound produced, but what is 
produced at each step of the loop and especially what is visible: music and moves. 

 

Figure 13: The EvoMove feed-back loop. (A) Dancer moves are captured by body sensors 
(Inertial Measurement Unit) that can be placed on arms, legs, center of mass… (red dots). (B) 
The sensors produce a high-dimensional data-stream. (C) This data-stream is clustered by 
SubCMedian algorithm that outputs a set of clusters. (D) The sound system outputs sounds 
that are immediately perceived by the dancers who can adapt their dance, leading to 
reciprocal adaptation of the clusters, hence of the music. This feedback loop produces 
coherent music due to the close integration of dancers and clustering algorithm: the duration 
of the loop is less than 1 second, enabling real-time response of the system. 

These specificities made it impossible for us to anticipate the result of this work before the first test. 
We had no idea about what could happen, how controllable, or even understandable, the system 
would be. We thus were sincerely surprised after our first trials by the fact it works so well. Then 
we had to define what we understand by the statement “it works”, and we found out that what 
made us say that is the feeling of interaction when using it, or even when watching someone using 
it. Even though this interaction is sometimes hard to describe explicitly, or sometimes could look 
messy, we were still able to build a representation of the coaction of the human and the system. 
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This is also surprising compared to what is done in other state-of-the-art move recognition systems 
used in music control. A common practice is the use of many specific sensors and pre-processing 
steps, combined with a closely supervised learning algorithm. On the contrary, the EvoMove 
system uses a few generic sensors, that can be placed anywhere on the body, without any pre-
processing or normalization. And yet we reached this “it works” feeling. 

Our supposition about what makes this system that efficient, besides the possibilities offered by the 
SubCMedians algorithm, is the integration of the human user in the feedback loop. As a 
consequence, the human is always adapting their own moves and actions to fit what they 
understands of the state of the system. Thus, even though the machine part of the system is 
deviating from what would be seen as interaction, the human is able to follow it so as to keep this 
interaction alive. This process does not have to be conscious from the user perspective. Just by 
investing effort into being understood by the system, the user adapts their actions alongside the 
system state changes. 

4.4. Conclusion 
As the 2011 FET Consultation Report5 “Living Technology, Artificial Systems, Embodied Evolution” 
shows, many approaches have been proposed to create living technologies. Now at the end of the 
EvoEvo project, and having created what we think is a living technology (“EvoMove”), we claim that 
the key insight into building living technologies is to go back to a fundamental property of living 
systems. Living systems are in essence strongly integrated systems, while technological systems 
are, by construction, strongly modular systems. Living technologies will only be efficient if they are 
strongly integrated with their users, be it a real person (as in EvoMove), or a software entity (as in 
commensal architecture). 

In some sense, this proposal is not a total surprise, since it is a similar mindshift as the one that 
happened at the end of the 1980s in robotics. The development of Behavior-Based Robotics by 
e.g. Rodney Brooks was nothing other than the close integration of robots with their environments 
and of robots’ components one with the others. We now propose that software systems 
themselves, although they are not physical entities, follow the same path in order to be able to 
dynamically react and adapt to their users. This will enable living software systems to co-construct 
their behaviour with a user who, in that same moment, will become a partner of this behaviour. 

5. Conclusion 

In three years, the EvoEvo project produced numerous outcomes, as this report shows: more than 
50 international publications and communications have been produced and more than a dozen are 
still in preparation. However, maybe more than the number of results, the wide disciplinary and 
interdisciplinary range of these results is a clear mark of success for this project that, from its very 
beginning to its end, placed a bet on interdisciplinary collaborations. 

It is well known that interdisciplinary research is difficult. In the case of EvoEvo, we would like to 
emphasize the fact that all partners collaborated throughout the project whatever their scientific 
background was. They all learnt to discuss together, and all were highly tolerant of the repeated 
questions and misunderstanding that necessarily occurs throughout such a project.  

                                                
5 http://cordis.europa.eu/fp7/ict/fet-proactive/docs/shapefetip-wp2013-03_en.pdf 
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We are pleased to announce that all the objectives of the project have been fully met during these 
three years: 

• Many EvoEvo strategies have been identified in the two biological models used in WP1 
(TEV and E. coli). All these strategies have been published in high-ranked journals. 

• An integrated model dedicated to the computational study of EvoEvo has been developed 
and tested in WP2 (Evo2Sim). This model is available for the scientific community on the 
project website (http://www.evoevo.eu/evo2sim-software/). 

• Using Evo2Sim and other models available in the different teams collaborating on the 
project (Aevol, R-Aevol, virtual cell, virtual microbe…) we performed different in silico 
evolutionary experiments (including models of the experiments performed in WP1). Results 
of these experiments enabled us to better characterize the EvoEvo strategies identified in 
WP1 and, in some cases, to help understanding the results of the wet experiments (WP3). 

• In WP4 the main EvoEvo strategies have been used to design and implement a 
computational platform EvoMachina that enables EvoEvo exploitation for Artificial Evolution 
applications. This platform has been tested on two different applications (TSP and 
subspace clustering) and is available for the scientific community on the project website 
(http://www.evoevo.eu/evomachina/).  Additionally, WP4 developed a novel “bio-reflective 
architecture”, and used it in experiments of evolving machines encoded on genomes, 
thereby demonstrating semantic closure of the integrated system. 

• Finally, in WP5 the EvoEvo strategies have been implemented in two demonstrator 
applications. Both applications are based on evolutionary subspace clustering algorithms 
developed during the project (http://evoevo.liris.cnrs.fr/chameleoclust/). The first application 
(EvoWave) uses an evolutionary clustering algorithm to identify the working context from 
the WiFi signals received by a machine. The second application (EvoMove) uses it to 
classify the moves of a dancer and to learn to play music according to the choreography. 

Given the ambitious goals of the EvoEvo project, a three years project could only superficially dig 
into the innovative concepts that were at the core of the project (evolution of evolution, living 
technologies, open-endedness, bio-reflective architectures…).  EvoEvo has successfully opened 
many opportunities for future researches and technical developments. The question is now opened 
of the future of this consortium and of the continuation of this research. Two options are possible: 
going on with the same interdisciplinary consortium – or with a very similar one – or expand the 
consortium to launch different projects in the different disciplines covered by EvoEvo. These two 
options are not exclusive, but the latter is simpler than the former. Many smaller projects could 
immediately start to continue the collaborations. Indeed, most of the collaborations that started 
within the EvoEvo project are going on. In this view, we have applied for an H2020 FET grant, the 
Innovation Launchpad. The objective of this project (Evo2Move) is to continue the collaboration 
between INRIA and University of York on the development of the musical personal companion (the 
“living instrument”) and to enlarge its domain of application (we have been contacted by 
physiotherapists who are strongly interested in EvoMove as a potential rehabilitative tool). Other 
similar projects will probably be launched in a near future, e.g., to go on with the modelling of 
laboratory experiments. Discussions are currently underway about the opportunity to submit 
another project to the next Innovation Launchpad call (September 2017) or to the EIT Health – 
e.g., on the development of evolutionary models that could be used for education. But these 
smaller projects must not hide the fact that, given the success of the EvoEvo project and the 
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sustained quality of the interactions between the partners, we are all ready to repeat the EvoEvo 
experience and start an EvoEvo2 project. 
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