
EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 1 of 26

 EvoEvo Deliverable 4.3

 EvoMachina user documentation

Due date: M30 (April 2016)
Person in charge: Susan Stepney
Partner in charge: University of York (UoY)
Workpackage: WP4 (A computational EvoEvo framework)
Deliverable description: A calibrated, tested and documented implementation of the platform

specification (D4.2), suitable for developing the evoevo component of an
open-ended application (WP5). A report containing a description of the
platform and the CoSMoS approach “simulation platform”

Revisions:

Revision no. Revision description Date Person in charge
0.1 Initial release for comment 28/04/16 Tim Hoverd (UoY)
0.2 Further user documentation 28/06/16 Tim Hoverd (UoY)
1.0 Release version 30/06/16 Susan Stepney (UoY)
1.1 Corrections and validation 15/09/16 G. Beslon (INRIA)
2.0 Updated with clustering implementation 18/10/16 Tim Hoverd (UoY)
2.1 Release version 2 26/10/16 Susan Stepney (UoY)

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 2 of 26

Table of Contents

1. INTRODUCTION 3

2. THE EVOMACHINA PLATFORM MODEL 3

2.1. STRUCTURES AND MACHINES 4

2.2. SPACES AND INDIVIDUALS 5

2.2.1. SEARCHABLE SPACES 6

2.3. TYPES OF MACHINE 7

2.4. DOMAINS AND MACHINE FACTORIES 8

3. IMPLEMENTATION DECISIONS 8

3.1. JAVA 8

3.2. SIMPLE CONCURRENCY MODEL 9

3.3. CLASS LIBRARY 9

3.4. COMMAND LINE 9

4. EXAMPLE IMPLEMENTATIONS 9

4.1. EXAMPLE: TRAVELLING SALESPERSON 9

4.1.1. IMPLEMENTATION DETAILS 10

4.1.2. PROPERTIES FILE 15

4.1.3. EXECUTION AND LOGGING 17

4.1.4. REFINEMENT OF THE TSP APPROACH 19

4.1.5. TSP RESULTS 22

4.2. EXAMPLE: SUBSPACE CLUSTERING 23

4.2.1. OVERALL DESCRIPTION 24

4.2.2. IMPLEMENTATION DETAILS 24

5. SPECIALISATION FOR A NEW PROBLEM 25

6. SUMMARY OF IMPLEMENTATION 25

7. CONCLUSION 26

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 3 of 26

1. Introduction

This document is user documentation for EvoMachina, an implementation of the conceptual model
first developed and described as deliverable 4.1.

The conceptual model is a model for genetic algorithms that is based explicitly on a biological cell’s
reproductive machinery. The central notion of the model is the explicit use of machines to
represent those parts of the cell machinery that carry out operations within the cell and that have
an underlying structure that defines the details of their behaviour.

This document first summarises the D4.1 conceptual model. It then defines the implementation
model (platform model in CoSMoS development parlance1) that satisfies the requirements of the
conceptual model, and summarises how the implementation works. It then documents the process
of specialising the implementation model into two specific problem domains (TSP and clustering),
each with a specific, and well-known, problem to solve. These specialisations form guidelines for
users who wish to use EvoMachina in other domains of application.

2. The EvoMachina conceptual model

The basics concepts of EvoMachina are Structures (Machines, Templates, Repositories),
Domains, and Spaces (individuals and Sites), see figure 1.

 Structure. A structure is a sequence of objects of a particular type, that stores information,
and may additionally have behaviour.
o Machine. A machine is an active structure; different machines perform the various

operations in the system, such as mutation, replication, expression, and domain-specific
activities. It is the analogue of the protein in a cell. Machines may degrade, and so need
continual replenishment.

o Template. Machines are described by Templates. Translator machines build a specific
machine from its template description. A template is the analogue of mRNA in cells.

o Repository. Templates are stored in a Repository. Transcriber machines extract
individual templates from the repository. Kloner machines build mutated repositories on
replication. Any information incorporated in associated machines can therefore evolve.
The repository is the analogue of a DNA chromosome in cells.

 Domain. A domain captures the `physics' of a particular collection of structures. There may
be multiple domains, in particular, domains related to evolution, and domains related to
problem-specific features.

 Space

o Individual. An individual is a space that contains a collection of Structures, comprising
various machines, templates, and repositories. Its behaviour is given by the activity of its
various machines. It is the analogue of a cell. Individuals may contain other individuals,
analogues of cells with compartments.

o Site. A site is a space that can contain individuals; it is the implementation of physical
location. A site may also contain others sites, allowing hierarchical spatial structures.

1 P. S. Andrews, S. Stepney, T. Hoverd, F. A. C. Polack, A. T. Sampson, J. Timmis, 2011, CoSMoS process, models,
and metamodels. CoSMoS 2011, Luniver Press, pp.1-13.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 4 of 26

An Individual is a candidate solution. Individuals replicate when some criterion is met, such as a
clock tick and winning a tournament for generational algorithms, or a suitable energy level or
machine concentration being reached in other approaches.

Figure 1. Conceptual model of EvoMachina: see text for details.

3. The EvoMachina implementation model

The D4.1 conceptual model summarised above has been translated into an implementation model,
making design decisions suitable for implementation in a concurrent object-oriented language.

3.1. Structures and Machines

The core idea contained in both the conceptual and the implementation model is that of a machine,
which is a special case of a structure that contains information that defines the behaviour of the
machine. This and related notions are summarised in the UML class diagram in Figure . This
model shows that:

1) A Structure is some sequence of Pearls each of which is drawn from a particular Domain.
Moreover, all of the pearls that form the code of a particular structure are required to be drawn
from the same domain. Pearls are not mutable and in some implementations it might well be
the case that a specific domain contains prototype2 implementations of each possible Pearl.

2) A Machine is a special sort of structure that has some behaviour, exemplified by the presence
of a doIt operation, the specific implementation of which carries out some function that is the
specific machine's role.

3) Many machines, for example one tasked with translating a transcription unit into a functioning
machine, might well have a specific source structure as the structure upon which it operates.

2 E. Gamma; R. Helm; R. Johnson; J. Vlissides, et al. (1994). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1 edn.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 5 of 26

In this example the Translator machine would have a source structure that was the
transcription unit in question.

Figure 2: Structures and Machines

4) Similarly, some machines might produce some structures as a result of their activity. This is
shown as the target structures in the figure.

5) The Domain represents the entire world of a set of related Pearls. As such, the notion of how
to mutate a sequence of Pearls, likely the code of a Structure, is implemented by the Domain
itself and represented here as the mutate() operation. Furthermore, the domain acts as a
factory for new machines of the appropriate sort. Although the mutation operation itself is
defined within the Domain, it is the case that that mutation is invoked by the Machinery of an
individual.

3.2. Spaces and Individuals

Structures, and the specialised structures that are machines, always exist in the context of some
Space. Figure shows the basics of this relationship.

Figure 3: Structures within Spaces

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 6 of 26

Here a Space is the environment within which a collection of Structures exist. Specifically,
Structures cannot exist outside of an environment. A space can have a hierarchical structure with a
container having a set of possible subspaces.

There is a specific type of Space, Individual, which represents a set of structures, some of which
are machines, that are cooperating to solve some task. That task might just be surviving in some
environment or it could be a specific computation that is a component of an overall genetic
algorithm. More particularly, an Individual has a collection of structures as its repositories which is
the set of structures that are templates for the machines that can, and may, be expressed within
the context of that Individual.

3.2.1. Searchable spaces

A particular problem being solved using the EvoMachina framework exists as a space that contains
(directly or indirectly) Individuals, each of which is a putative solution to the problem being
addressed. In order to guide implementation an interface SearchableSpace is defined that
specifies the behaviour required of such spaces. In particular, a search() operation is defined that
carries out some search for the currently best found solution. Different implementations might
realise this operation, for example, to carry out one generation of reproduction of the individuals
held in the experiment.

Figure 4: SearchableSpaces

SearchableSpace extends the standard Runnable interface, meaning that experiment classes also
have to be able to be run() as a separate thread.

Many applications of EvoMachina will need a set of source data. For example, the data clustering
application discussed in section 6 needs a set of observations. In order to support this requirement
a SearchableSpace is optionally associated with a set of data that is the source data for such an
experiment.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 7 of 26

3.3. Types of machine

As machines provide the behaviour of an Individual, from replication of that individual to solving the
task that is embodied by the individual, there is a need for various types of machine. As shown in

Figure , this is achieved by specialising the Machine class and overriding the functionality of the
doIt operation.

Figure 5: Machine varieties

The machines shown in this figure are the most basic set of machines necessary for replication of
individuals:

Transcriber

Such a machine is responsible for turning some part of an Individual's repository into
something which describes a machine that can be expressed. This is the computational
analogue of DNA transcription into mRNA in the biological processes. The standard
implementation of the Transcriber machine has hard coded functionality and essentially
ignores its code; the sequence of Pearls that is mutated as Individuals are replicated. Future
implementations of the Transcriber machine could remove this concept, opening up
transcription to being itself mutated down the generations.

Translator

A translator machine is responsible for expressing a specific machine from the results of an
antecedent transcriber machine. It uses the facilities of the domain of the source structure to
actually create a machine of the appropriate type. Like the Transcriber, the behaviour of this
machine is currently hard coded, but could in the future be encoded, and hence mutatable, in
a similar manner to the Transcriber machine.

Reproducer

A reproducer machine is responsible for the detailed actions required as an Individual is
replicated. This is another hard coded machine, but again one whose future behaviour could
be encoded and hence mutated.

Kloner

The kloner machine is responsible for mutating an individual's repositories into those
structures that appear in a descendent Individual. In its simplest variant such a machine is
again hard coded. However, the example implementations described elsewhere in this

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 8 of 26

document show approaches that have been used to effect some mutation of the underlying
rules for the replication processes.

3.4. Domains and machine factories

Many aspects of execution of EvoMachina implementations create new instances of the various
machine classes. Due to the soft nature of the definition of the types of machine it is necessary for
some other object to act as a factory for new instances of specific types of machine. The
EvoMachina design uses the Domain objects for this factory and, consequently, Domains must
implement a constructMachine operation, a default version of which appears in the abstract
superclass itself. Again, in new implementations some concrete subclass of Domain could
implement this operation in a new manner. The built in structure is shown diagrammatically in
Figure 6; note that a Domain has available to it the type of the machines that it is responsible for
creating.

Figure 6: Domains as machine factories

Each domain has an instance of the class of the type of machine for which a particular structure is
the machine template. The domain can use this class, by reflection, to construct instances of the
required type of machine as they are required to be expressed by the Translation mechanism and
in particular by Translator machines.

4. Implementation decisions

In order to implement the model described in section 3, a collection of implementation decisions
have to be taken. The most important of these are described here:

4.1. Java

It is necessary to choose a programming language that has wide applicability, is easy for users to
come to terms with and which is mostly insensitive to the implementation platform. The decision
was therefore taken to use Java, using the most recent (at the time of writing) release: Java 8.
Java 8 provides a good degree of platform independence and a number of sophisticated facilities
that allow for concise programming. It is also available for just about every execution platform
available.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 9 of 26

One example of the use of Java is that the implementation of the abstract class Individual specifies
that an Individual must implement the specialised interface: Comparable<Individual>. That is, all
Individual object must be comparable with each other; the implementation elsewhere assumes that
such a comparison yields the “best”, in terms of fitness, object.

4.2. Simple concurrency model

It is expected that implementations of many real world problems using EvoMachina will result in an
execution context with a large number of Individual objects competing for machine resources. All
modern execution contexts will be multi-core environments and, as such, managing the concurrent
use of those processor cores will be essential to achieving efficient use of the machine. It would be
possible to use many different mechanisms to manage this concurrency but many of them would
obscure the essentially independent nature of each executing Individual object. As each Individual
is modelled to some extent after a biological cell, which themselves act independently, then
retaining that independence is an important part of this model.

As such, the EvoMachina implementation uses Environment Orientation3 to simplify the
concurrency model. Essentially, each Individual executes independently and the world within which
they live manages the interdependencies such as competition for potentially shared resources.
This matches what happens in the biological world where organisms are independent and inter-
relationships are mediated by the (in this case real) world of physics.

4.3. Class library

The ideal ultimate implementation of EvoMachina would be something like a shared API or REST
website so that users could easily access that implementation without having to incorporate it into
their own code.

However, such a sophisticated approach has not, yet, been implemented. The current
implementation is as a Java class library, encapsulated in a .jar file. It is expected that users will
encode their own implementations as extensions of these standard classes.

4.4. Command line

The current EvoMachina implementation has not implemented any visualisations. In order to allow
for simple execution, it is easy to build command line executables using property files for definition
of many run time parameters. A logging framework, based on the standard java.util.logging
framework provides for extensive logging to files or, ultimately, other data sources. Currently,
analysis of the behaviour of an implementation must be done by textual analysis of the contents of
log files using a tool such as awk.

5. Example implementation 1: TSP

In order to explore the capability of the current implementation this section includes details of two
example implementations. The first of these (this section) searches for solutions to the Travelling
Salesperson Problem, the second (following section) implements an EvoEvo algorithm for
subspace clustering.

3 Hoverd, T. & Stepney, S. (2015), 'Environment orientation: a structured simulation approach for agent-based complex
systems.', Natural Computing 14 (1) , 83-97.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 10 of 26

The implementation described in this section searches for solutions to the Travelling Salesperson
Problem (TSP). This is a problem well known to computer science and, as such, there are known
heuristics for solving the problem, or at least converging on a good enough solution.

The TSP problem is that given a set of locations of cities which a putative salesperson has to visit
just once, what is the ideal route around those cities that minimises the distance that the
salesperson has to travel?

So, for example, a typical TSP problem might be to find the shortest route that visited all the state
capitals of the "lower 48" US states (that is, the contiguous states). Test data is readily available
with which to set up this particular problem, as well as many others. The data used in the example
discussed here was obtained from a website4 that provides many different TSP data sets.

A TSP problem is essentially one of taking a list of cities and permuting it in many ways until a
good solution is found. In this implementation the approach taken is to permute a list of cities using
the Lin-Kernigham heuristic5. This is a k-opt generalisation of the approaches known as 2-opt, 3-
opt, and so on. The heuristic is basically to cut a defined journey around all of the cities at a
number of places in the journey (the value of k) and to reassemble the pieces in all possible ways
and then to re-evaluate the time taken to traverse the newly assembled journeys.

Full details of the implementation approach to applying EvoMachina to the TSP problem are
contained in the following sections. In general, the approach taken is to:

1. represent a journey around a set of cities as the code for a specialised machine which
calculates the fitness of a specific individual

2. make the code of that machine a sequence of pearls, each of which represents a specific city
in the journey

3. make the domain of those pearls understand both how to permute the list of cities and what
the distance is between any pair of cities, thereby allowing the fitness machine to calculate the
overall fitness

4. create a world which is a searchable space and which represents a number of possible
solutions to the problem as a population of individuals journeys

5. mutate the journeys by both applying a k-opt permutation to the journeys and allowing the k
itself to mutate.

5.1. Implementation details

A single possible solution to a TSP problem is represented as an Individual of some sort. The
individual supports an operation that provides the journey time that it represents. The journey time
is the fitness of the particular individual. These individuals exist in a world where a number of
similar individuals exist, each representing a possibly different route around the cities of the
problem. These individuals compete to take over more of the world, with successful individuals
being replicated into new parts of the world and less successful ones being left to die off. Such
replications mutate the route used, possibly leading to a better solution.

The world used for the implementation described here is a toroidal space. That is, every square
site in that world has neighbours on all four sides. Each site in the toroidal space is constrained to

4 https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
5 Lin, Shen; Kernighan, B. W. (1973). "An Effective Heuristic Algorithm for the Traveling-Salesman Problem". Operations
Research 21, 498–516.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 11 of 26

having only one, or no, resident individuals. The described implementation handles concurrency in
the following manner:

1. The toroidal space handles competition between individuals and as such is scheduled to
periodically carry out competitions.

2. Each site in the space is periodically scheduled to run any resident individual.
3. When an individual is run it:

a. Decides whether to commit suicide, which is done on the basis of the number of times it
has been run (essentially how old it is) and how many times it has replicated (which is
some measure of its success).

b. If it is still alive, it looks to see if there an adjacent empty site (using a von Neumann
neighbourhood) and, if so, tells the containing world that the empty site so found should
be competed for.

These actions are carried out in a specified number of threads using Java thread scheduling
features, in particular those provided by the standard ScheduledExecutorService class.

Given this structure, a particular TSP problem can be solved by seeding one or more individuals
into the toroidal space with initial random routes and then letting those individuals replicate across
the space. Success, or otherwise, is supported by the world itself providing the current “best”
individual when required.

The following sections describe the specific extensions to various parts of the basic EvoMachina
framework described above that have been made to support the TSP implementation. The overall
structure is summarised in figure 7.

Figure 7. Instantiation of an EvoMachina Individual for the TSP: see text for details. (Some machines are omitted for
clarity.)

5.1.1. Spaces

The TSP implementation realises the SearchableSpace interface, as shown in

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 12 of 26

Figure , to represent the space within which a particular problem is solved. This class is
ToroidalTSP2DSpace. This space contains a number of implementations of the basic class Site

(the Journey2DSite class), each of which contains, or not, an instance of the class Journey, a
Space which represents a particular route around the cities of the problem.

5.1.2. Domains

The TSP implementation includes two subclasses of the Domain class that provide for TSP
specific functionality. These are:

CityType

This domain represents the set of all possible cities through which the solution must make its
journey. All cities in the implementation are instances of the application specific class City. A
CityType object knows, in a particular experiment, what the distance between any pair of
cities is. It is assumed that the distance from city A to city B, for example, is the same as that
from B to A. One part of the initialisation of a particular problem is setting up the CityType
instance with all the required inter-city distances. Also on initialisation of a CityType instance
a mutation operator must be provided that implements the Lin-Kernigham heuristic as
described above. The CityType class knows that the type of machine for which it is a factory
is the TSPCalculator machine, see below.

KlonerDomain

This domain is the set of all possible k in a k-opt mutation operator. The current
implementation uses all integers between 2 and 10 in this domain, with the particular value
used for a particular Kloner machine being determined by which Pearls in the Kloner
machine are set to be coding, as opposed to non-coding.

5.1.3. Pearls

The TSP implementation contains, necessarily considering the Domains, two new specialisations
of Pearl:

City

This Pearl represents a specific City that is part of a Journey.

KlonerPearl

Such a Pearl represents a single value for k in the application of the k-opt approach to the
permutation of the TSP Journey.

5.1.4. Machines

The set of machines available in this implementation is as follows:

Transcriber

This machine is responsible for taking one of the structures in an Individual's repository and
transcribing it into a new Structure representing a transcription unit. In this initial
implementation the only modification done here is to excluded non-coding Pearls from the
transcription unit.

Translator

This machine is responsible for taking a transcription unit and generating the appropriate
type of machine with the code of the transcription unit as the new machine's code. The new

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 13 of 26

machine is created by using the domain of the transcription unit which, by reflection, provides
a facility to construct a new machine object of the appropriate class.

Reproducer

This machine, which is an essential part of all Individuals, is responsible for coordinating the
efforts of other machines in order to replicate an individual space. This approach is a
deliberate shortcut 6, with the replication encoded explicitly.

TSPCalculator

This machine represents the fitness function of the containing Individual. Its code is the
sequence of cities in a particular possible solution to the overall problem. This machine
supports a specific operation to provide the journey time of the calculator machine in
question. The method that implements this operation uses the facilities provided by the
CityType domain to provide the answer and this operation is used by the specific individual
space which contains this type of machine.

Kloner

This machine is used explicitly by the reproduction process implemented by the Reproducer
machine. Its action it to replicate the repositories of the “parent” individual into that of the
“daughter” individual. However, this replication is potentially inaccurate in that each template
in the repository is copied using the mutate() operation of its associated Domain object. The
method invoked here may well mutate the code of the template in some domain-specific
manner.

The code of the Kloner is a sequence of KlonerPearl objects and provides the mechanism for
determining the value of k to use when permutating the code of the TSPCalculator machines.

EvoMachina code is available from github.com/evoevo-york/evomachina

All classes in the example TSP implementation, which includes the TestNG test suite, are in the
package EvoEvo.york.tspTest.

5.2. Main class

In addition to all the classes described above, a particular command line invocation of the problem
is encapsulated as the Main class in the package that contains all the TSP classes. The entire
source code of the main method of that class is shown below, with interspersed commentary to
describe its function.

Initialisation requires that the user invoke the application with the name of a Java properties file
that describes various execution parameters:

public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println(String.format("Usage: java -classpath <classpath> %s <property...",
 Main.class.getName()));
 System.exit(1);
 }
 // Create the domain:
 SetUp();

6 Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat, James A. Foster, Barry McMullin, Vinicius
Veloso de Melo, Thomas Miconi, Lee Spector, Susan Stepney, Roger White. Defining and Simulating Open-Ended
Novelty: Requirements, Guidelines, and Challenges. Theory in Biosciences, 135(3):131-161, 2016

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 14 of 26

The setup method, elsewhere in the Main class, sets up the necessary domains for the
implementation including the CityType domain which knows the distances between the various
cities in the problem.

The properties file is embedded in a singleton class, Simulation, that is used elsewhere in the code
to determine the value of execution time parameters. The parameters in this file are used to create
the world within which the problem will be solved. Here it is using a two dimensional toroidal space,
each cell of which contains an instance of the class JourneySite which can contain an instance of
the Journey class itself.

 // Load the Properties files into the Simulation class that is referred to by...
 try {
 Properties properties = new Properties();
 properties.load(new FileInputStream(args[0]));
 Simulation.SetProperties(properties);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(2);
 }
 // Create the toroidal TSP world. In this case it's 9x9 cells by default:
 int xSize = Simulation.GetValue("xSize", 9);
 int ySize = Simulation.GetValue("ySize", 9);
 ToroidalTSP2DSpace world = new ToroidalTSP2DSpace(xSize, ySize);

Here the KlonerDomain is created and an initial journey, with a random route through the world, is
created. This particular Journey object uses a Kloner object which mutates the k in the k-opt used
to mutate the journey itself.

 // Create a single journey in the centre of the new world
 _KDomain = new KlonerDomain("Kloner domain", Kloner.class);
 List<Pearl> route = CreateInitialRandomRoute();
 Space js = world.getSubspace(xSize/2, ySize/2);
 Journey j = MakeJourneyWithMutatingCopier(route, js, _CityDomain, _KDomain);

Here the executor service, which will manage a number of separate threads, is created and each
site in the world, and the world itself, are submitted to the executor service to manage.

 // Create scheduled executor and give it all the sites in the world to look after:
 ScheduledExecutorService executor =
 Executors.newScheduledThreadPool(Simulation.GetValue("numThreads", 20));
 world.getSubspaces()
 .forEach(s -> executor.scheduleWithFixedDelay(
 (Journey2DSite)s,
 0,
 Simulation.GetValue("siteExecutionDelayInMicroseconds",
 100),
 TimeUnit.MICROSECONDS));

 // Allow the world itself to be run and retain a Future object:
 ScheduledFuture result = executor.scheduleWithFixedDelay(
 world,
 0,
 Simulation.GetValue("worldExecutionDelayInMicroseconds", 50),
 TimeUnit.MICROSECONDS);

Here the execution is run, periodically printing out the current best journey, until either the best
journey is better than some threshold or a maximum execution time is reached.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 15 of 26

 Optional<Individual> best;
 long time = System.currentTimeMillis();

 do {
 try {
 Thread.sleep(Simulation.GetValue("reportingDelayInMilliseconds", 100));
 } catch (InterruptedException e) {}
 best = world.best();
 String message;
 if (best.isPresent()) {
 message = String.format("Best of %d is: %s",
 world.numJourneys(),
 best.get().getContainer().get());
 } else {
 message = String.format("Best of %d is: nobody",
 world.numJourneys());
 }
 System.out.println(message);
 } while ((best.isPresent() ? ((Journey)(best.get())).journeyTime() : 10000000) >
 Simulation.GetValue("targetTime", 35500)
 &&
 System.currentTimeMillis() < (time + Simulation.GetValue("totalRunTimeInMilliseconds",
 60000))
 &&
 !result.isDone());

Finally, the executor is shutdown and the final result both logged and printed out.

 if (result.isDone()) {
 try {
 Object r = result.get();
 System.out.println("result is " + r);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 executor.shutdownNow();
 try {
 executor.awaitTermination(5, TimeUnit.SECONDS);
 } catch (InterruptedException e) {}

 Machine.FlushLogger();
 _Logger.info("Completed, best is " + best.get().getContainer().get());
 Machine.FlushLogger();

 System.out.println("Best: " + best);
}

5.3. Properties file

This section contains details of the properties file, which must be provided to execute the example
EvoMachina code. The properties file is in the format of a normal textual Java properties file. For
example, a part of one file could be:

logFileName = evoevocl.log
logLevel = FINE
numThreads = 120
targetTime = 34500

The complete set of possible properties is as follows:

logFileName

The name of a file, possibly including a path, to which the EvoMachina code will log events.

logLevel

The name of the logging level. The set of names is defined in the standard Java class
java.util.logging.Level.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 16 of 26

numThreads

The number of virtual machine threads that should be scheduled for this problem by the Java
Executor used. This number should be at least, and probably greater, than the number of
hardware threads available due to the number of processor cores present.

targetTime

The targetTime for journeys by the travelling salesperson. Execution will cease once this
journey time has been reached.

xSize, ySize

The sizes of the two dimensions of toroidal world used in terms of the number of sites in that
world. So, having a value of 9 for each property would imply there were 81 sites in that world.

programmedDeath

true if the code of the Journey objects should determine whether, or not, a specific Journey
should die.

deathByOldAge

true if Journey objects die as a consequence of being run, and replicated, a certain number
of times. If false then there is a probability that a Journey will be killed off on every run of the
Individual.

replicationMultiplier

A number that is multiplied by the number of times that an individual Journey has been
replicated. If the number of times a Journey has been run is greater than the result, then the
Journey will be killed off.

minRunCount

If the deathByOldAge parameter is true, then this is number of times that a Journey must be
run before being killed off. If deathByOldAge is false, and programmedDeath is true, then this
is indicative of the probability of a Journey being killed on each run. That is, if the value is
100 then the chance of a Journey being killed on each iteration is 0.01.

minKOpt

The minimum value of k in k-opt as is used by the code

maxKOpt

The maximum value for k that may be used.

initialKOpt

The initial value for the k in k-opt.

siteExecutionDelayInMicroseconds

The time in milliseconds between individual Sites in the world becoming due for execution.
Whether they are executed or not depends on whether other run clients have been executed,
the number of threads available and the performance of the host machine.

worldExecutionDelayInMicroseconds

The time in microseconds between executions of the overall world object. The same
considerations as those for siteExecutionDelayInMicroseconds apply here.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 17 of 26

reportingDelayInMilliseconds

The delay between console reports about the progress of the overall execution.

totalRunTimeInMilliseconds

The total time that an execution will run, in milliseconds, before being terminated.

numToroidalJourneys

The initial number of journeys that will be populated, at random positions, in to the toroidal
space.

5.4. Execution

The EvoMachina code is provided in the jar file, which may be executed, on a computer that has
Java installed, using the command line:

java -jar <path to jar file> <path to execution properties file>

This will cause the code to search for a route around the state capitals of the lower 48 US states
stopping either when an acceptable solution has been found or the execution exceeds some value
as determined by the properties file. Along the way the code will generate output on the console of
this form:

Best of 6 is: Journey2DSite: <1> [5:3] [Journey: [0, 148179, 5] (1,2,3,4,5,36,14,15,16,35,32
Best of 32 is: Journey2DSite: <1> [4:1] [Journey: [0, 135732, 4] (1,2,3,4,5,6,7,8,9,45,23,24
Best of 67 is: Journey2DSite: <1> [6:3] [Journey: [0, 128766, 5] (1,2,3,4,5,28,29,13,12,11,1
Best of 80 is: Journey2DSite: <66> [6:3] [Journey: [1, 128766, 5] (1,2,3,4,5,28,29,13,12,11,
Best of 72 is: Journey2DSite: <16> [6:4] [Journey: [0, 126291, 5] (1,2,3,4,5,28,29,13,12,11,
Best of 76 is: Journey2DSite: <45> [5:4] [Journey: [0, 117255, 4] (1,2,3,4,5,6,7,8,9,45,23,2
Best of 73 is: Journey2DSite: <8> [1:3] [Journey: [0, 108651, 2] (1,2,3,9,8,7,6,5,4,45,23,29
Best of 76 is: Journey2DSite: <0> [2:4] [Journey: [1, 108000, 2] (1,2,3,9,38,37,46,47,21,20,

Each line here is a report of the best solution at a particular point in time. Each row here consists of
a summary of how many individuals are in the current (9x9) toroid and the result of invoking the
Java toString() operation on the best site in the current world. So, in the first row above, the
components are:

6

There are currently 6 solutions in the toroid.

<1>

This particular site has been run() 1 time since its contents last replicated.

[5:3]

This site is at position (5,3) in the toroid.

[0

This journey has been replicated 0 times

148179

The journey time represented by this journey

5

The value of k in k opt in this journey. Note that this value is the k in the code of the Kloner
machines in this Journey. This value might well be different from the value in the journey that

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 18 of 26

was the parent of this one, but this is the value that will be used when mutating the route of
the current journey.

(1,2,3,4...

This is the sequence of the cities in this specific object.

In addition to this output, running the jar file will also result in the generation of a log file. This may
contain a very large amount of data recording every single replication and suicide event. The
"level" of the data recorded7 in the log file, and the name of the log file, may be changed using the
parameters in the properties file.

5.5. Logging

The log file produced by the TSP code includes the following components. Below there is an (often
truncated) example of a log file line and an explanation of the underlying cause.

Jun 28, 2016 12:23:35 PM EvoEvo.york.machineMetaModel.Machine Initialise

In general, each record in the log file appears on a separate line. Each such line is preceded
by another line that contains information about what specific method is being run and at what
time it was run. In this case the static initaliser component of the Machine class is being
executed.

INFO: Initial population: 20

This record, which is produced in the INFO log level and all finer ones, records the initial
Journey population of this run.

FINE: {1467113015468} Adding destination Journey2DSite: <0> [3:1] as replication target of source
site Journey2DSite: <1> [2:0] [Journey: [0, 163706, 5] (1,11,...)]

This line is produced when some Journey informs its containing world that it would like to be
considered for replication into another site. The other information provided is:

1. The result of System.currentTimeMillis().

2. The description of the target site (in this case [3:1] which is currently empty).

3. The description of the site wishing to replicate, this includes the exact information
discussed earlier in this section.

FINE: {1467113015605} Committing suicide: Journey2DSite: <3> [7:8] [Journey: [0, 170924, 5]
(1,10,11,41,19,18,39,42,31,22,5,21,...)]

Here the journey in a particular site is committing suicide. This particular execution is using
the programmedDeath concept discussed in section 5.3. Similar lines appear if
programmedDeath is not in use, but the line records that the journey is being killed by code
outside the Journey itself.

FINE: {1467113015618} Replicated parent Journey2DSite: <0> [2:0] [Journey: [1, 163706, 5]
(1,11,12,43,5,36,...)] into child Journey2DSite: <1> [1:0] [Journey: [0, 165450, 4]
(1,11,12,...22,1)]

Here a particular site (the one in [2:0]) is being replicated into the adjacent site at [1:0]. As
usual, the same information is recorded for each Journey and here it can be seen that the
route has been mutated and, in fact, produced a new Journey that is actually worse than the
parent. (A journey time of 165450 whereas that for the parent was 163706.)

7 Note that if a very large amount of the data is logged, then it has the parallel effect of making the entire execution run
as a single thread, as flushing the logger takes overall precedence.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 19 of 26

5.6. Alternative TSP approach

As a further example of the use of the EvoMachina framework, this section includes details of the
extension of the existing example to support a new underlying mechanism: the use of the Microbial
GA 8 approach to optimisation.

Configuration parameter

In order to configure EvoMachina/TSP so that the Microbial genetic algorithm is used a new
property is added so as to configure the code. As such, the properties file contains:

 programmedDeath = false

This parameter tells the EvoMachina/TSP code that the usual "programmedDeath" approach
to death of Journey individuals is not to be used.

Remove programmed death

The code for the Journey class, the specialisation of Individual, is modified to that the
Journey objects do not decide for themselves whether, or not, to die when they are run in the
case where programmedDeath is set to false:

 boolean shouldDie = false;
 if (Simulation.GetValue("programmedDeath", false)) {
 // This code, which decides whether a Journey should die, is
 // ignored if programmedDeath is set to false. By default, it's
 // assumed to be true
 }

Create a new test

It is essential that all extensions of the framework are properly tested. So, the first thing to do
is to write a test, and ensure that it fails.

The code for this test is all shown here. The first thing to do is to define that a new test exists
using the annotation that allows the TestNG code to see that it's a test:

// Annotation that defines the next method to be a TestNG test with a
// specific priority
@Test (priority = 100)

At the start of the code for the test, which will be done in a "bucket" space which is just a
collection of Journey objects with no notion of position in a world, the space is created (which
is a new class MicrobialGATSPSpace) and populated with a specified number of Journey
objects, each with a random initial route. The number of journeys created is defined by the
numMGAJourneys parameter in the execution properties.

8 Harvey, I. (2011), The Microbial Genetic Algorithm., in George Kampis; István Karsai & Eörs Szathmáry, ed., ECAL
2009, Springer, pp. 126-133 .

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 20 of 26

// Define new test method:
public void singleThreadedSearchInBucketSpaceUsingMicrobialGA()
{
 // Create SearchableSpace for MGA approach using new space class:
 SearchableSpace world = new MicrobialGATSPSpace();

 // Create a complete set of journeys in the new space:
 int numJourneys = Simulation.GetValue("numMGAJourneys", 100);
 KlonerDomain kDomain = new KlonerDomain("Kloner domain", Kloner.class);
 for (int i = 0; i < numJourneys; i++)
 {
 List<Pearl> route = createInitialRandomRoute();
 this.makeJourneyWithMutatingCopier(route, world, _cityDomain, kDomain);
 }

Now we assert that the world has the expected number of journey objects:

 assertEquals(world.numIndividuals(),
 numJourneys,
 "Number of journeys in MicrobialGA");

Now we loop around until a specific time has elapsed or the best journey is better than some
threshold. On each iteration we ask the world object to provide the current best result and
print out that result, using the toString() method implemented by the Journey class, every
time that a predefined number of iterations has elapsed.

 Journey best;
 long time = System.currentTimeMillis();
 int searchCount = 0;
 do
 {
 best = (Journey)world.search().get();
 if (searchCount++ % 100 == 0)
 {
 System.out.printf("Best of %d is: %s%n", world.numSubspaces(), best);
 }
 } while (best.journeyTime() > Simulation.GetValue("targetTime", 35500)
 &&
 System.currentTimeMillis() <
 (time + Simulation.GetValue("totalRunTimeInMilliseconds",
 60000)));

The test concludes by logging the result, taking care to flush the logger queue, and asserting
that the world still contains the same number of Journey objects and that the result of
execution has shown at least some convergence on the expected solution:

 Machine.FlushLogger();
 _logger.fine(String.format("{%d} Completed, best is %s",
 System.currentTimeMillis(), best));
 Machine.FlushLogger();

 assertEquals(world.numSubspaces(),
 numJourneys,
 "Number of journeys in MicrobialGA at end");
 assertTrue(best.journeyTime() <
 Simulation.GetValue("microbialGASuccessThresholdTime",
 50000),
 "MicrobialGA threshold time");
 System.out.println("Best: " + best);

Execute new test

Executing the new test, as expected as the new space class has not been defined over and
above anything necessary for the code to compile, causes and immediate failure by
exception. In this case, the failure is due to the fact that a default implementation of the
search() operation required by the SearchableSpace interface answers null.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 21 of 26

Implement MicrobialGASpace class

This new class is an extension of the basic Space class, and implements the methods
required by the SearchableSpace interface. Although the class was originally constructed as
part of the TSP application it has no specific dependency on the TSP code. As such, this
extension of the Space class is part of the machineMetaModel package.

Constructing an instance of the class ensures that it's the "topmost" space in a hierarchy:

/** A Searchable space that implements the Microbial GA algorithm for finding
TSP solutions */
public class MicrobialGATSPSpace extends Space implements SearchableSpace {
 public MicrobialGATSPSpace() {
 super(Optional.empty());
 }

One method provides the currently "best" solution within the space, which just compares all
the subspaces of the object, which are all Journey objects, finding the one that provides the
minimum journey time:

@Override
public Optional<Individual> best() {
 Optional<Space> best = this.getSubspaces()
 .stream()
 .min((j1, j2) ->
 ((Individual)j1).compareTo((Individual)j2));

 return Optional.of((Individual)best.get());
 }

Note that this method uses the inherent comparable nature of individual objects to determine
the currently most fit occupant of the space.

The code so far does not provide a searching capability though and the test, when executed,
merely loops around providing the details of the initially best solution:

Best of 100 is: Journey: [0, 135815, 5] (1,2,3,4,5,6,7,8,9,10,11,12,13,14
Best of 100 is: Journey: [0, 135815, 5] (1,2,3,4,5,6,7,8,9,10,11,12,13,14
Best of 100 is: Journey: [0, 135815, 5] (1,2,3,4,5,6,7,8,9,10,11,12,13,14
Best of 100 is: Journey: [0, 135815, 5] (1,2,3,4,5,6,7,8,9,10,11,12,13,14

java.lang.AssertionError: MicrobialGA threshold time expected
 [true] but found [false]

Expected :true
Actual :false

Implementing the search() operation in the SearchableSpace interface provides the
searching capability:

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 22 of 26

@Override
/** Implement the microbial GA algorithm which is to:
 * 1) Randomly select a pair of individuals
 * 2) Remove the least fit of that pair and replicate the other
 * which leaves the population of the space the same as it
 * was at the start of the process */
public Optional<Individual> search() {
 // Select two individuals:
 Journey j1 = (Journey)this.getSubspace(
 ThreadLocalRandom
 .current()
 .nextInt(this.numSubspaces()));
 Journey j2;
 do {
 j2 = (Journey)this.getSubspace(
 ThreadLocalRandom
 .current()
 .nextInt(this.numSubspaces()));
 } while (j1.equals(j2));

 // Work out which is the best and which the worst of the two:
 Individual best = i1.compareTo(i2) < 0 ? i1 : i2;
 Individual worst = best.equals(i1) ? i2 : i1;

 // Remove the worst from the container and replicate the best:
 this.removeSubspace(worst);
 this.addSubspace(best.replicate());

 // Answer the best journey, which may now be better than when we started:
 return this.best();
}

Now, when executing the test useful results are returned:

Best of 100 is: Journey: [13, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [13, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [14, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [8, 36234, 3] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,2
Best of 100 is: Journey: [10, 36234, 3] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [14, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [12, 36234, 3] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [12, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [14, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [15, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [16, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [18, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [21, 36234, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [12, 36234, 3] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [15, 36234, 4] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [16, 36234, 4] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [18, 36234, 4] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [14, 36234, 4] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best of 100 is: Journey: [16, 36234, 4] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,10,24,45,35,42,
Best: Journey: [0, 35414, 2] (1,9,40,11,23,14,34,3,22,16,41,2,4,26,35,45,24,10,42,29,5,48,32,

===
Default Suite
Total tests run: 1, Failures: 0, Skips: 0
===

5.7. TSP results

Producing bulk results can be done by analysing the log files produced by EvoMachina. Figure 8 is
a plot, produced using an awk script to analyse the log file and some subsequent Python code, that
shows how the value for the journey time decreases over time. The plot shows how the value
decreases for each new instance of Journey with time, in milliseconds on the x axis. The colour of
the blobs indicates the value of k used to replicate the individual with darker colours representing
smaller values of k.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 23 of 26

Figure 8. Results from a typical run of EvoMachina on the 48 US state capitals TSP: see text for details. Each dot
represents the birth of an individual; the colour represents the k-value of the parent used to create this individual: darker
colours represent lower k values. (top) fitness plotted against time of birth; (bottom) k-value of parent plotted against time
of birth.

6. Example implementation 2: Subspace clustering

The second example implementation is noted here, again demonstrating how to extend
EvoMachina for a specific application. The code repository should be consulted for the details of
the implementation.

The problem is of clustering data in an n-dimensional space into a number of clusters, each of
which is grouped around some point in that space, or a lower dimensional subspace. The intent is

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 24 of 26

that the clustering is done so as to minimise a measure of the distance between the data points
and the notional centres of the clusters. The approach used is based on that described elsewhere9,
which is closely followed, but is specialised for use with the EvoMachina framework

6.1. Overall description

The general approach taken is as follows:

1. A specific type of individual represents a single clustering, a set of core points, which are a
putative set of centres for clusters around which the data are grouped.

2. In addition to the machines already described a new fitness calculation machine has a code
which defines a set of core points which are the centres of the putative clusters in the data.

3. These core points are defined by a sequence of cluster pearls which encode the position of
the core point in n-dimensional space. (The value of n is a constant in a particular experiment.)
The particular encoding is closely based on that described in the source paper and each pearl
includes 4 values:
a. a notion of whether a particular pearl codes, or not, into the resulting phenotype;
b. which core point is addressed by a pearl
c. which dimension within that core point is addressed by a pearl
d. what the contribution is to that dimension of that core point.

4. The domain of the clustering pearls defines a complex mutation procedure which mixes
structural mutations (deletions, duplications and translocations) with point mutations to
particular pearls. The mutation is hence controlled by four separate mutation rates each
addressing one of these types of mutation.

5. The mutation rates are defined by the structure of the Kloner machine which, in a manner
analogous to the mutation of the k-opt in the TSP application, mutates the mutation rates
themselves. The mutation of mutation rates is itself controlled by a simulation parameter,
definable in the simulation properties file already discussed.

6. A set of individuals compete to find that which is most fit when replicated and mutated in the
normal manner. The competition can take place within any of the implementations of
SearchableSpace that appear in the framework.

7. An individual is most fit when the value provided by the cluster calculator, which essentially
sums the distances between the data points and their closest core point, is minimised.

6.2. Implementation details

In order to implement the clustering mechanism, the following additional classes, all of which are
specialisations of standard parts of the EvoMachine framework, are part of the clustering code:

1. ClusterableDataset is a realisation of Dataset that contains a set of Observations, each of
which represents a particular point in n-dimensional space.

2. ClusterPearl represents part of a core point, in particular a component of the core point's
position in one of the dimensions of the data.

3. ClusterCalculator is the fitness machine for clustering. The code for this class, a sequence of
ClusterPearls defines a set of core points and the calculated fitness measures the mismatch
between those points and the data in the dataset.

9 Sergio Peignier, Christophe Rigotti, and Guillaume Beslon. 2015. Subspace Clustering Using Evolvable Genome Structure.
In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15), Sara Silva (Ed.). ACM, 575-
582.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 25 of 26

4. A Clustering is an Individual that represents a particular set of core points, as determined by
the code for the ClusterCalculator machine that is part of the contents of the Clustering.

5. A ClusteringType is the domain of the ClusterPearls. Most importantly this class knows how to
mutate the code of a particular ClusterCalculator in order to produce the code of an offspring
Individual.

EvoMachina code is available from github.com/evoevo-york/evomachina

See the code repository for the specific implementation. Classes for the clustering example are in
the package EvoEvo.york.machinaClust.

7. Specialising EvoMachina for a new problem

EvoMachina code is available from github.com/evoevo-york/evomachina

The process to be followed for configuring the EvoMachina framework to a new problem is outlined
here. All framework classes are in the package EvoEvo.york.machineMetaModel.

The expected procedure is as follows. Many details can be seen by inspecting the source code,
and the generated javadoc, for the EvoEvo.york.tspTest and EvoEvo.york.machinaClust
packages.

1. Create a new package to contain all classes that use, and are extensions, of the framework,
including application-specific domains, machines, and spaces as necessary.

2. Write TestNG tests to exercise the new domains, machines and spaces. Ensure that they all
fail.

3. Write extension classes for:
a. The necessary domains and pearls.
b. The necessary machines, over and above the standard ones such as Translator.
c. The spaces and related topics such as site and searchable spaces. The framework

contains three basic searchable space implementation which can be used as is, or as the
basis for further development. These are: ElitistSpace which allows search by retaining an
elite proportion of the population at each step, MicrobialGASpace which implements the
Microbial GA algorithm as already described and Toroidal2DSpace which implements a
2D toroidal space with competition between neighbours on the toroid.

4. Execute all tests, including those defined for the framework classes themselves, and ensure
they all pass. This will likely require some iteration of this list.

5. Write a harness, as exemplified by the TSP main class, for execution of the model.

8. Summary of implementation

The classes included in the base part of EvoMachina system (broadly those classes in the
EvoEvo.york.machineMetaModel package) address the following aspects of the machine model:

Domains and Pearls

Several basic classes are the abstract superclasses of classes that will be necessary in a
new implementation.

EvoEvo Project

Deliverable 4.3
FP7-ICT FET Proactive EVLIT program EvoMachina user documentation
Project reference: 610427 Version 2.1

 Page 26 of 26

Machines

Several classes implement machines necessary for execution of EvoMachina algorithms
(such as Transcriber) and are the superclasses for machines likely to be necessary in a new
implementation.

Spaces

Superclasses are provided for the spaces within which experiments execute and also for the
individuals that are the putative solutions to a problem.

Dataset

The basic requirements for a dataset over which an algorithm executes are specified here.

Utility

Many utility classes exist, such as those to support execution time parameters and the
superclass of EvoMachina exceptions.

9. Conclusion

The EvoMachina framework provides a collection of code that supports the implementation of
genetic algorithms which execute according to a process that is inspired by the expression and
mutation of biological genomes. Of particular interest is the fact that mutation itself if also encoded
into the “genome”, meaning that mutation rates themselves can also mutate to allow an algorithm
to adapt to changing situations.

Future research will investigate using EvoMachina in situations where the problem itself is
changing, in particular where the environment for an experiment is changing.

