
EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 1 of 6

EvoEvo Deliverable 4.5

Reflective applications

Due date: M36 (October 2016)

Person in charge: Susan Stepney

Partner in charge: University of York (UoY)

Workpackage: WP4 (A computational EvoEvo framework)

Deliverable description: Reflective application: A report containing a description of a CoSMoS
approach “Simulation Experiment”: a description and evaluation of a
prototype reflective application built using the Computational reflective run-
time platform (D4.4) as the evoevo component.

Revisions:

Revision no. Revision description Date Person in charge

0.1 Initial release for comment 24/10/16 Simon Hickinbotham (UoY)

1.0 Release version 28/10/16 Susan Stepney (UoY)

1.1 Code repository locations added 9/11/16 Susan Stepney (UoY)

EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 2 of 6

Table of Contents

1. INTRODUCTION 3

2. APPLICATION 1: EVOEVO IN AUTOMATA-BASED R-P MODELS 3

3. APPLICATION 2: LIVE CODED MUSIC 3

4. APPLICATION 3: CO-EVOLVED MUSIC AND DANCE 5

5. CODE LOCATIONS 5

6. CONCLUSION 5

7. REFERENCES 6

EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 3 of 6

1. Introduction

This document describes the prototype applications developed using concepts from the reflective

EvoEvo approach described in D4.4.

2. Application 1: EvoEvo in automata-based R-P models

Rather than design a wholly new system, we focussed here on using EvoEvo principles to increase

the stability of our existing Stringmol system (see D4.4 for an overview of stringmol). Much of the

work in WP3 is concerned with Replicator-parasite (RP) systems, in which evolving agents are

able to survive parasitism by virtue of their spatial distribution. This results in higher levels of

selection, where `waves' of replicators are driven across the arena by parasites.

By implementing a stringmol replicase system in a spatial arena, we were able to avoid extinction

by this parasite mechanism (Hickinbotham & Hogeweg 2016). In addition, we have observed

novel behaviours emerging. The new replicative behaviours are described in Deliverable 3.4.8.3,

where the interactions are studied from a biological perspective. The relevant computational

components of this system are noted here. These are:

 Longer interaction times. A feature of the evolved replication is that program fragments

interact over longer timescales, due to double execution of the copying loop. This is a

strategy for negating parasites, because they must wait for the molecule to scan itself

before getting copied, which slows their replication disproportionately to replicators.

 Re-purposing of code fragments. These systems are seeded with a hand-designed

copying program which binds to other instances of itself and copies them. The programs

have bind sites and copying regions. What emerges towards the end of experiments is a

repurposing of these regions. The bind site is no longer used to recognise ‘self’ - rather it is

tuned to recognise a ‘partner’ replicating molecule, which makes the landscape more

rugged in terms of parasitism. We have also observed instances of the use of the copying

region as a binding site. This means parasites cannot bind unless they have code for

copying - again reducing the ability of parasites to destroy the system.

 Higher level organisation. The addition of the spatial component to the stringmol model

allows new levels of organisation to emerge, since the products of local interactions are

only available locally.

3. Application 2: Live coded music

Reflective EvoEvo is most suited to situations where the application environment is constantly

changing, and in which the system can interact in a dynamic way with that environment. One of the

attractions of working in musical systems is that time must be considered implicitly, and the

dynamics of the performance must be accommodated. In addition, it is desirable that the

application involves the direct use of code fragments. For these reasons, we decided to study

evolutionary experiments in live coding (McLean 2014) of computer-generated music

(Hickinbotham & Stepney 2016a).

Live coding is the use of domain-specific languages (DSLs) to improvise new musical pieces in a

live concert setting. The code can be edit on the fly whilst the music is playing because the

EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 4 of 6

interpreter is robust enough to detect bad syntax before attempting to generate audio from the

intended patterns.

Audiences at live coding events are very open-minded, and are used to ‘glitches’ appearing as the

performance continues. As long as unsympathetic patterns are removed, than that is accepted as

part of the experience. These are the ideal conditions for experiments with music evolution.

We have developed a new reflective evolutionary system that augments this live coding process by

generating and maintaining a population of coded musical patterns that are interactively expressed

as audio during the performance. The population of evolved patterns changes gradually with the

piece, and provides a reference point and storage for a changing bank of aesthetically pleasing

patterns. The system allows the actions of the human coders to be fed back to the population as

adjustments to the fitness of patterns, resulting in a novel musical interactive genetic algorithm

(MIGA) (Rodriguez & Vico 2013).

Our system is sufficiently flexible to allow the generation of pieces using evolved patterns alone, or

any mix of evolved patterns and manually configured patterns. It is accessed through an extension

to the live coding approach as supported through the Extramuros browser-based platform (Ogborn

et al 2015). Extramuros is a system that allows browser-based collaboration of a group of

performers on live-coded pieces of music and graphics across a network. The availability of this

system makes it easier to use automation to suggest patterns for use and further manipulation by

the coder. An evolutionary process is an ideal candidate for the automatic generation of new

coding patterns within this context.

We selected Tidal (McLean 2014) as our live coding language because it is relatively well

documented and straightforward to install in an Extramuros framework. The live coding approach

allows more immediate interaction between human and automaton. Live coding languages are

more like conventional computer code than other musical notation systems but with more

emphasis on brevity and ease of editing than is common in programming languages, sometimes at

the expense of clarity.

Live coding requires a text-based grammar to encode the musical sounds, designed to be

constantly manipulated rather than simply written once and interpreted many times. This grammar

is amenable to a genetic programming approach to evolving systems. We have developed this

application as a means of applying ideas from EvoEvo to the generation of mutations in these Tidal

music fragment patterns (Hickinbotham & Stepney 2016a). The mutations are based on the Tidal

musical grammar: incoming code fragments are converted to parse trees, which allows mutations

to be generated that conform to the grammar.

Two example videos of our system being used to evolve live coded music are available at

www.youtube.com/watch?v=UXAMjvPn_VY and www.youtube.com/watch?v=iCTOtfxpElU. In each

of these, it takes some time to evolve interesting patterns, So, in the second video, to start

listening at a time when the music has had sufficient chance to evolve, start at

youtu.be/iCTOtfxpElU?t=705. In each of these examples, the ‘pullmut’ function (where the user

requests a mutation of the currently selected patter) is the main source of innovation in the

patterns, with the occasional hand-coding or editing of evolved patterns by the user. These

performances compare favourably with hand-coded Extramuros-based performances such as

those at www.youtube.com/watch?v=zLR02FQDqOM, especially when it is recognised that the

users of the evolved system have little or no previous experience of live coding. We currently have

no means of quantitatively comparing live coding performances, however.

EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 5 of 6

In that delivered implementation, the rates and types of mutation that could be generated are hard-

coded. This is the first stage of development of a system that uses a reflective architecture to

generate mutations. Future work should incorporate ideas of mutable mutation rates from

EvoMachina (D4.3)

4. Application 3: Co-evolved music and dance

Our system is also amenable to using a range of different methods of interaction to drive the

evolutionary process. A collaboration of York and Lyon INRIA EvoEvo partners resulted in an

architecture called commensal computing (Abernot et al 2016), in which a motion-based control

system is co-evolved with the generated musical patterns. This complements the dance

application developed in WP5.

This approach maps onto a model of creativity called “Creative Systems Framework", derived by

Wiggins from the work of Margaret Boden (Wiggins & Forth to appear); this also has analogues to

our bio-reflective architecture (Hickinbotham & Stepney 2016a).

5. Code locations

The stringmol code repository, including spatial stringmol, is at github.com/franticspider/stringmol

The tidalGE code repository is at github.com/franticspider/tidalGE

Two example evolutions are given at www.youtube.com/watch?v=UXAMjvPn_VY and

www.youtube.com/watch?v=iCTOtfxpElU

6. Conclusion

The core of this workpackage concerns selecting or designing an appropriate language for both

supporting bio-reflection and for implementing applications. We have examined two approaches:

using a single language (stringmol) to evolve R-P systems, and using a Domain Specific Language

(Tidal) as the link between bio-reflection and the application environment. This approach has

allowed us to gain understanding of how bio-reflection runs evoevo ‘on itelf’, and how the outputs

of bio-reflection can be used in a time-varying application.

The results of this approach are that we have a new level of understanding of how a bio-reflective

system can be implemented: by adding a spatial component to the stringmol architecture we have

a more open-ended system in which to continue our research into bio-reflection. However, it is

difficult enough to design a reflective language that simply maintains itself even without generating

suitable outputs to drive an application. It would be wasteful to have to redesign the bio-reflective

language for each application. A more efficient approach would be to develop standard ways to

interface the reflective language with the application language. The biological analogy is with the

expression of proteins: the DNA/RNA component captures the reflection, but the protein

component forms the active machine that carries out the task. Our work in live coding illustrates

the merits of this approach, with which new ways of interacting with evolving system can be

produced. Thus a future implementation of the bio-reflective architecture in the EvoMachina

framework (D4.3) could be fruitful.

EvoEvo Project

Deliverable 4.5
FP7-ICT FET Proactive EVLIT program Reflective applications
Project reference: 610427 Version 1.0

 Page 6 of 6

7. References

References marked with (*) were produced wholly or in part by the EvoEvo project.

(*) Jonas Abernot, Guillaume Beslon, Simon Hickinbotham, Sergio Peignier, Christophe Rigotti. A

Commensal Architecture for Evolving Living Instruments. In Conference on Computer Simulation of

Musical Creativity, Huddersfield, UK, June 2016.

(*) Simon Hickinbotham, Paulien Hogeweg. Evolution towards extinction in replicase models:

inevitable unless.... In 2nd EvoEvo workshop, Amsterdam, 2016.

 (*) Simon Hickinbotham, Susan Stepney. Augmenting live coding with evolved patterns. In

EvoMusArt, Porto, Portugal, March 2016, volume 9596 of LNCS, pages 31-46. Springer, 2016a.

(*) Simon Hickinbotham, Susan Stepney. Bio-reflective architectures for evolutionary innovation. In

ALife 2016, Cancun, Mexico, July 2016, pages 192-199. MIT Press, 2016b.

Jose David Fernández Rodriguez, Francisco J Vico. AI methods in algorithmic composition: A

comprehensive survey. Journal of Artificial Intelligence Research, 48:513-582, 2013.

Alex McLean. Making programming languages to dance to: live coding with Tidal. In: Proceedings

of the 2nd ACM SIGPLAN international workshop on Functional art, music, modeling & design.

pages 63–70. ACM, 2014

D. Ogborn, E. Tsabary, I. Jarvis, A. Cardenas, A. McLean: Extramuros: making music in a

browser-based, language-neutral collaborative live coding environment. In: A. McLean, T.

Magnusson, K. Ng, S. Knotts, J. Armitage (eds.) Proceedings of the First International Conference

on Live Coding. p. 300. ICSRiM, University of Leeds, 2015

Geraint A Wiggins, Jamie Forth. Computational creativity and live algorithms. In Alex McLean,

Roger Dean (eds) Oxford Handbook on Algorithmic Music, in preparation.

