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1. Introduction 

The core area of research in this workpackage has been to address the issue of reflection in 

evolving systems. The established models of computational reflection (Maes 1987; Smith 1984)  

implement reflection either by recursive self-monitoring, or by a simpler process of applying metrics 

to software performance. The former cannot be directly embedded in an evolving system, whereas 

the latter does not have a facility to adapt as evolution progresses.  

Facing these challenges, we have looked at ways to take abstractions of the framework from 

workpackage 4.1 and adapt them for EvoEvo at code level in such a way that reflection could be 

incorporated into the model. The abstraction that we used is inspired by von Neumann's universal 

constructor architecture (UCA) (von Neumann & Burks 1966). But the UCA has no direct 

relationship between the abstraction and conventional models of reflection. We have developed a 

new bio-reflective architecture (Hickinbotham & Stepney 2016), which re-casts computational 

reflection into an evolutionary framework.  

2. Design and implementation 

Our bio-reflective architecture has been designed, and various experiments based on the prior 

stringmol AChem have been implemented, as described in the following sections.  First we 

summarise the platform details as necessary to make this document self-contained.  The reader is 

refered to the source literature for the full details. 

2.1. Bio-reflective architecture 

Our new bio-reflective architecture is described in full in (Hickinbotham & Stepney 2016).  In 

summary, it is a synthesis of concepts from: 

1. von Neumann’s Universal Constructor Architecture (von Neumann & Burks 1966) 

2. procedural computational reflection (Maes 1987) 

3. evolutionary algorithms 

4. open-ended novelty mechanisms (Banzhaf et al 2016) 

5. the EvoMachina architecture of active “machines” and passive “structures” 

von Neumann’s UCA contains a “tape” that encodes the system, and expressions of that tape that 

act on each other, and on the tape.  The key concept is replication by copying the tape, then 

expressing its description as “machines” (Andrews & Stepney 2015), rather than replication by self-

inspection. 

The procedural reflection architecture has components analogous to some of the “machines” in the 

UCA, but only has access to the code of one of these machines: the application, not the expressor, 

copier, or controller machines. 

Our bio-reflective architecture merges these two architectures, identifying the relevant machines.  

The UCA is augmented with (reflective) mutation and control; procedural reflection is augmented 

with access to the entire code base; a genetic population of individuals provides the route to 

implementing the reflective modifications of an individual; the resulting bio-reflective architecture 

supports the requirements of open-ended novelty. 
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2.2. Stringmol AChem 

Stringmol (Hickinbotham et al 2010b) is an existing automata chemistry (Dittrich et al 2001) that we 

have exploited as a computational language and execution environment for most of our reflective 

EvoEvo research experiments reported here. 

In stringmol, the `molecules' are programs encoded as strings of opcodes (single symbols, each of 

which specifies a computational operation to be performed).  A stringmol chemistry operates in an 

abstract container, in which multiple pairs of molecular strings interact with each other. A (typically) 

aspatial physics engine gives pairs of molecules the opportunity to bind using a `soft' matching 

algorithm, where less good matches have a lower probability of binding. After binding, the 

molecular program executes, using both strings as program and data as determined by the 

sequence of opcodes. 

An energy flux places an effective carrying capacity on the number of molecules in the system 

(although this depends on the size and properties of the molecules).  Each opcode consumes a 

unit of energy when executed.  A stochastic decay function removes molecules from the system 

with a fixed probability. Species of molecules must somehow be reproduced or they will disappear 

from the container.  It is possible for the container to `die' when a mutation destroys a self-

maintaining cohort of molecules and no molecules remain in the container. 

Mutation can happen when a molecular program executes the copy opcode. A small chance of 

error is built into this operator, with the effect that a symbol is mis-copied (deleted, substituted, or 

inserted).  

Molecular strings with certain computational properties are designed using the stringmol language.  

An experiment starts by seeding a container with such designed molecules, then running it under 

mutation.  Different initial seed molecules result in different evolutionary behaviours. 

2.3. Replicase stringmol 

Stringmol has been used to explore replicase systems, by designing a seed molecule that can 

copy the molecule it binds to.  The experiments seed a container with these replicase molecules.  

See (Hickinbotham et al 2010a) for details of its evolutionary behaviours. 

Some of the experiments reported on below use the stringmol replicase molecule design to 

investigate EvoEvo properties in different contexts. 

2.4. Bio-reflective stringmol 

We have implemented the bio-reflective architecture in the stringmol language (Clark et al, 

submitted).  This involved designing a new molecule, analogous to a genome that encodes 

expresor, copier, and application molecules.  The initial container is seeded with genome and 

expressor molecules.  When a Copier molecule binds to a Genome molecule, it executes and 

creates a (possibly mutated) copy of the genome.  When an expressor molecule binds to a 

genome molecule, it expresses (possibly with error) the various molecules encoded on the genome 

(see figure 1). 
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Figure 1. Normal operation of the Expressor in stringmol-UCA.  Each shape represents a single molecule. Each 
molecular type has its own shape: Copiers (C) are triangles; Expressors (E0) are squares; Genomes (G) are circles; 
Payloads (P) are crosses. Each molecular species has its own column. The black bar represents a reacting pair of 
molecules. New molecules produced during a reaction are shown below the bar. Arrows show change of state.  The 
Expressor binds to the Genome. The Genome encodes descriptions of the Copier, the Expressor, and Payload. The 
Expressor interprets the Genome to create new instances of these machines (possibly with error). 

 

Some of the experiments reported on below use the stringmol genome/expressor molecule design 

to investigate EvoEvo properties. 

3. Mechanisms for adding and modifying existing code 

In an evolving system, the principal way in which code can be added or modified is through 

random mutation. However, a reflective architecture should go beyond this, and recognise when a 

situation demands change. This is seen in biological systems, where microbes under 

environmental stress increase their mutation rates in order to seek new adaptations (Foster 2007).  

These self-modified changes occur at the population level: new individuals are produced with new 

features, uniquely adapted to prevailing conditions.  

Thus, the bio-reflective approach to adding and modifying code is to have mechanisms in place 

that control both the rate and the manner of mutation in the evolving system. This is the key 

difference between our EvoEvo-based approach and techniques from genetic programming (GP): 

the reflective architecture requires that the code for mutation is part of the individual.  

We see these mutation mechanisms emerge in the stringmol architecture. The root of mutation is 

based on a simple copy error, whereby a new type of program fragment is created which differs 

from its ancestor by a single instruction. In certain circumstances, this change can trigger a 

cascade of reactions that move the system to a new state. 

Our work in EvoEvo has discovered two new routes to these states: space, and bio-reflection.  

3.1. Spatial stringmol 

Adding a spatial component to the stringmol engine has led to more stable replicator-based 

systems.  This work, exploiting WP4 concepts, was performed under WP3, and is discussed in 

deliverable 3.4.8.3.  Addition of spatiality lead to a reduction in parasitism in the population of code 

fragments. 
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3.2. Bio-reflective stringmol 

In order to compare our bio-reflective architecture with the original replicase-based configuration, a 

direct representation of the bio-reflective architecture has been implemented in stringmol (Clark et 

al, submitted). It is necessary to reduce the copy-error rate and decay rate, since the 

implementation uses molecules that are many times larger than the replicase molecules.  

The dynamics of the resulting system are markedly different from the original replicase design: 

parasitism is much less prevalent and is never responsible for collapse of the system.  

The bio-reflective implementation shows that mutation cascades can lead to different 

interpretations of the way that information is stored on a gene, depending on the state of the gene 

decoding architecture. During 500 trials, we observed several instances of change in the semantic 

closure between genotype and phenotype, in which changes to the expressor molecule lead to a 

different interpretation of the genotype without any change in the genome itself.   See figure 2 for 

one example; further examples of more complex cascades are given in (Clark et al, submitted). 

The meaning of the Genome (given by the Expressor) is encoded in the Genome, and can change 

without the Genome sequence changing. This is a strong example of EvoEvo in action.   

 

 

Figure 2. Semantic change without mutation of the genome.  Key as in figure 4. (1) Mutation while expressing G0 leads 
to  E1 instead of  E0. (2) E1 interprets G0 differently from E0. Where E0 read the G0 as coding for E0, E1 reads the gene 
as coding for E2. Thus E1 expresses E2 without error. (3) E2 interprets G0 as coding for C0, P0 and E2. 
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4. A "Crash-Proofing" layer 

One of the risks of evolving computer code is that the resulting execution profile brings the system 

down. This problem can be addressed by limiting the instruction set and placing restrictions on 

which data types can be passed to which operators. However, these approaches are rather 

restrictive for our needs.  

4.1. Use of automata chemistries 

Automata chemistries (Dittrich et al 2001) are ideal for experiments in this area, since they are 

designed to run code in a virtual sandpit without ever 'crashing the universe'. The challenge is to 

configure these chemistries such that innovative code structures are likely to evolve. This is 

achieved by: 

 Permitting local interactions only: code fragments can only interact in pairs. 

 Zero or minimal dependence and reference on a global control structure. Code fragments 

execute one instruction per global clock tick; code can only be executed if energy is 

available.  Beyond these concepts of time and energy, there is no reference to global 

constraints.    

By emphasising local interactions, arbitrary and unexpected modifications are most unlikely to 

have non-local effects.  The majority of changes are deleterious, but these either fail to interact 

with local code fragments at all, or the interaction has no product. However, rare events can lead to 

changes in the manner of reproduction, even in Replicator-Parasite systems (Hickinbotham & 

Hogeweg 2016).  When this is combined with a novel means of self-representation, our bio-

refelective architecture (Hickinbotham & Stepney 2016; Clark  et al, submitted), the result is a 

stable platform for evolutionary innovation.  

4.2. Populations protecting against soft crashes 

‘Hard’ crashes (where the system terminates via segfaults etc.) can be avoided by this strategy. 

‘Soft’ crashes (where the system halts via squandered resources, or the complete loss of 

executable code, for example) cannot (be guaranteed to) be designed out of the system, due to 

subtle interactions between the environmental ‘physics’ and the individual ‘chemistry’. This is a 

problem of system design, both at the population level and at the code fragment level. Since the 

instruction set used in stringmol has proved sufficient to generate novelty, work in EvoEvo 

focussed on population-level considerations, which are more likely to nuture newly emerging 

beneficial traits.  

4.3. Unintended biases in Automata Chemistries 

One approach we have taken to this problem is to examine selective biases in existing automata 

chemistries, where features in the implementation had the effect of emphasising evolution towards 

parasitism (Hickinbotham & Stepney 2015b).  We have identified several biases in Tierra, an early 

automata chemistry, which add unnecessary pressure to parasitism, and we have shown that by 

removing these biases the system is more able to resist the `race to the bottom' in terms of 

program length, increasing the likelihood of the emergence of innovative behaviours.  This 

research has exposed the lack of theory regarding the design of stable automata chemistries 

(although recent work by Ackley and Ackley (2015) is breaking ground in this area). 
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5. Support for an interacting population of code fragments 

5.1. Space 

Our main work on this topic has been to experiment with the environment in which code fragments 

interact. Our prior formulation of the stringmol automata chemistry modelled interactions in a “well-

mixed reactor”: under the assumption that it was important for code fragments to have the 

opportunity to interact with any other fragment in the system. However, this approach could not 

deliver systems that were stable due to the emergence of ‘parasitic’ code fragments that hi-jacked 

the replicating component of the system. Due to the mixing of code fragments, these parasites 

were able to interact with the entire cohort of replicators resulting in extinction of the population. 

Moreover, because the only resource that was limited was the energy per time step, it was 

possible for the parasites to get themselves copied indefinitely.  

Work conducted between York and Utrecht partners within EvoEvo has allowed models of 

Replicator-Parasite systems to inform the design (Hickinbotham & Hogeweg 2016). See 

deliverable 3.4.8.3 for further details. Before our work, it was thought that the addition of a spatial 

component to the AChem model was an unnecessary complication; we have shown that this is not 

the case: the spatial component is an important part of the design, eliminating the chance of ‘soft’ 

crashes via parasites.  

5.2. Mass conservation 

Parasites are a well-known problem in ALife, and can be lethal to the system by either destroying 

the self-replicating component, or squandering resources (Fortuna et al 2013; Ray 1991). One 

reason that parasites are so damaging is that there is no concept of material resource limitation in 

existing AChem systems.  

We ran experiments in stringmol, using the replicase seed, to determine the effect of mass 

conservation on replicating systems (Hickinbotham & Stepney 2015a).  

First, the system is given a fixed number of each type of opcode, with a uniform distribution, that 

can be used to make new molecules; decaying molecules release their opcodes to the pool.  We 

found a “sweet spot” of opcode number (figure 3): too little material and the system cannot survive; 

too rich a source of material and the system has no incentive to explore other pathways. 

Next, while still keeping the total number of opcodes constant at the “sweet spot” value, we 

searched for a distribution of opcodes that maximises evolutionary activity (figure 4), over 25 

evolutionary runs.  The high fitness results are much more evolutionarily active (QNN = 350-400) 

than the previous “uniform” opcode distributions (max QNN < 200, median QNN < 100).  

Interestingly, the copy operator ‘=’ concentration is often (although not always) low in high fitness 

runs. The copy operator ‘=’ has key functionality in the self-replicating system: how can low 

concentrations of this operator lead to self-maintaining runs with high evolutionary activity?  

To address this question, we took the fittest of the 25 runs, and redid the run with the four lowest 

density opcodes (which includes ‘=’) boosted by a factor of 10.  We measured the QNN 

evolutionary activity over 20 runs of this boosted system.  These all displayed only moderate 

evolutionary activity, whereas the unboosted systems have a much wider range of activities: being 

“on the edge” gives a higher risk of going extinct, but also a higher chance of more diversity.   
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Figure 3. Existence of a “sweet spot”.  Lifetime (top), number of species (middle) and QNN evolutionary diversity 
(bottom) for a range of opcode concentrations 1000 < lambda < 3000. 100 runs at each concentration are evaluated.  
See (Hickinbotham & Stepney 2015a) for full experimental details 

 

Figure 4: Evolved opcode concentrations for three typical GA runs (out of 25 runs in total).  (top) a low fitness run, QNN < 
100; (middle) a medium fitness run, QNN = 250; (bottom) a high fitness run, QNN = 350. The dashed blue line indicates 
a concentration of 400, which is 10% of the maximum concentration permitted in the GA.  See (Hickinbotham & Stepney 
2015a) for full experimental details. 
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These experiments demonstrate that mass conservation alone can push a system to new states 

without external imposition of a mutation rate. If an opcode is unavailable during replication, 

copying cannot occur; substitution or deletion are the only possibilities. The consequences of this 

simple observation are striking: under mass conservation laws, the ‘rate’ of mutation can change 

automatically if a system is stressed by resource limitation.  

In addition, we found that it is possible to promote a more active search of program-space by 

limiting the opcodes that are directly involved in the self-replication program, because this forces 

replicators to seek innovative replication pathways.  

6. Environmental interactions 

Environmental interactions form the 'payload' component of the bio-reflective architecture. In this 

way, they can be made subject to reflective actions as much as the other components of the 

system that we have given more direct consideration to. Rather than attempt to develop a single 

language for all applications at this stage, we have looked at how Domain Specific Languages for 

specific, dynamic tasks might be evolved within this framework. This work is covered in deliverable 

4.5.  

7. Code locations 

The stringmol code repository, including spatial stringmol, is at github.com/franticspider/stringmol 

The specification of the Genome, Expresser, and Copier stringmols used to implement the bio-

reflective architecture on the stringmol platform, are provided in Clark et al (submitted), 

A stringmol web application, allowing experimentation with specific stringmol instances, is available 

at stringmol.york.ac.uk/webapp/ 

8. Conclusion 

Our research has shown that, while it has not been possible to implement conventional models of 

computational reflection within an evolving system, a new synthesis of concepts in computational 

reflection with architectures for self-replication – our bio-reflective architecture – yields a more 

powerful model of reflection than has been available previously. These systems are most readily 

implemented in an automata chemistry. Our experiments show that these systems are capable of 

new levels of innovation, such as changes in the way a gene is interpreted.  

AChem models of programming are a new area of research, and the formulation of the 

computational model is in its infancy. In addition to the theoretical contribution of the our bio-

reflective architecture, we have made three important experimental contributions:  

1. discovery of implementation factors that bias the system towards parasites 

2. how space can protect a system from being overcome by parasites  

3. how mass conservation can drive evolutionary pathways  

Each of these considerations adds to the robustness of the system, allowing novel behaviours to 

emerge within the bio-reflective architecture framework.  
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