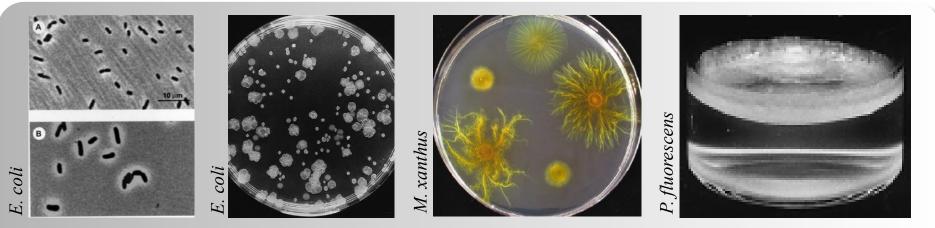


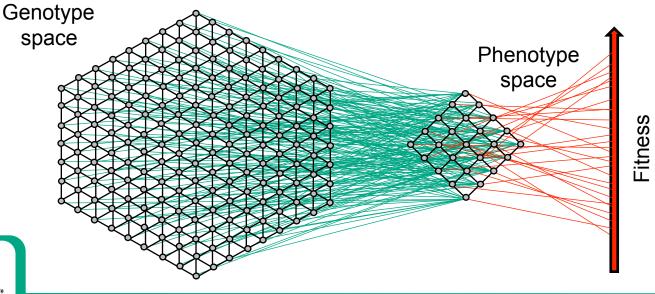
FP7-ICT-2013-10 Evolving Living Technologies

Evolution of Evolution

G. Beslon	D. Schneider	P. Hogeweg	S. Stepney	S. Elena
INRIA	Univ. J. Fourier	Utrecht Univ.	Univ. of York	CSIC
(Lyon, Fr)	(Grenoble, Fr)	(Utrecht, NL)	(York, UK)	(Valencia, SP)

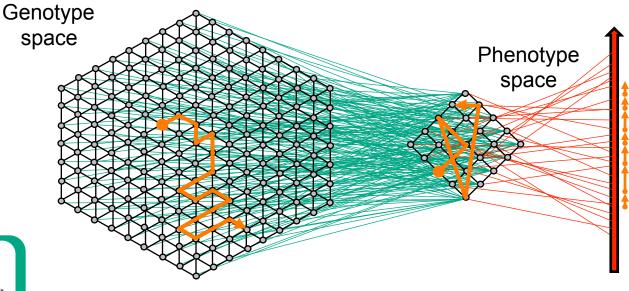


- Microorganisms are adapted <u>to evolve</u>
 - Evolution has optimized their ability to evolve as a primary mean to react to environmental changes

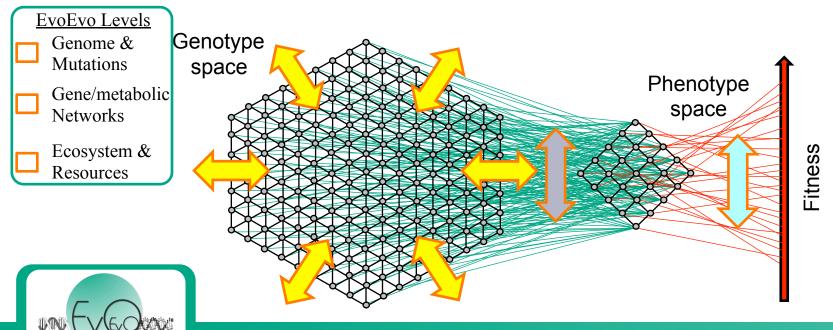


Examples from microbial experimental evolution (experiments from Rich E. Lenski, Greg J. Velicer and Paul B. Reyney; for a review see Hindré *et al.*, 2012)

→ Can we provide evolutionary technologies with the same property so as to create living technologies?



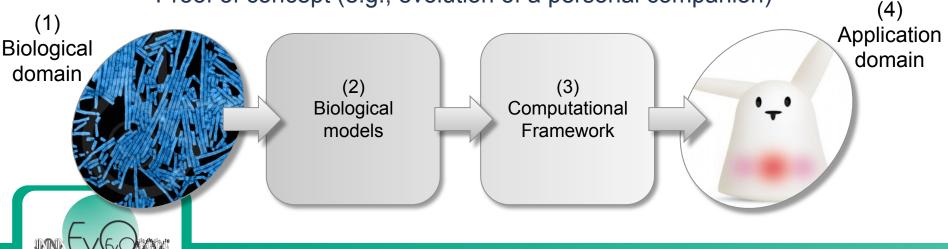
- Microorganisms are adapted <u>to evolve</u>
 - Evolution has optimized their ability to evolve as a primary mean to react to environmental changes
 - This optimisation process is the *Evolution of Evolution*
 - It is based on the evolution of the <u>genotype-to-phenotype</u> <u>mapping</u> and of the <u>fitness landscape</u>



- Microorganisms are adapted <u>to evolve</u>
 - Evolution has optimized their ability to evolve as a primary mean to react to environmental changes
 - This optimisation process is the *Evolution of Evolution*
 - It is based on the evolution of the <u>genotype-to-phenotype</u> <u>mapping</u> and of the <u>fitness landscape</u>

- Microorganisms are adapted <u>to evolve</u>
 - Evolution has optimized their ability to evolve as a primary mean to react to environmental changes
 - This optimisation process is the *Evolution of Evolution*
 - It is based on the evolution of the <u>genotype-to-phenotype</u> <u>mapping</u> and of the <u>fitness landscape</u>

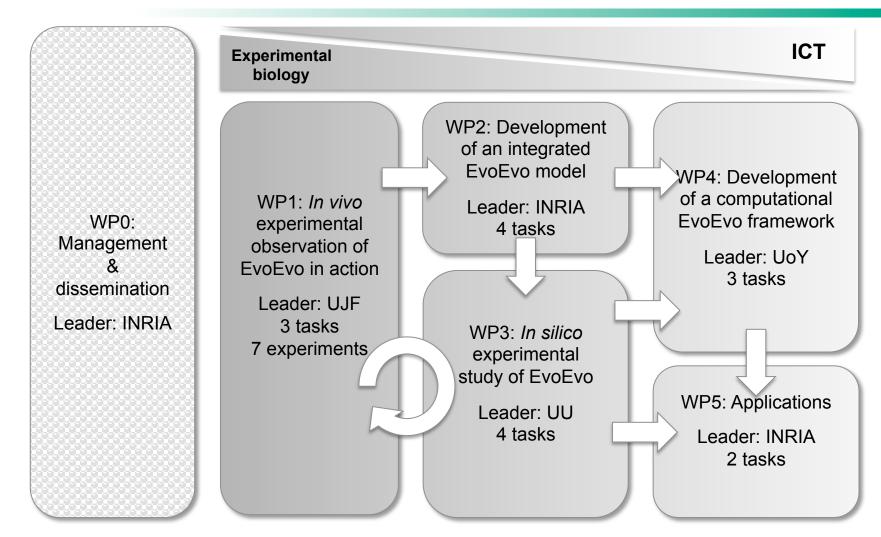
- Microorganisms are adapted *to evolve*
 - Evolution has optimized their ability to evolve as a primary mean to react to environmental changes
 - This optimisation process is the *Evolution of Evolution*
 - It is based on the evolution of the <u>genotype-to-phenotype</u> <u>mapping</u> and of the <u>fitness landscape</u>


→ EvoEvo will study how organism's genetic, regulatory, metabolic and social structure can be indirectly selected and the resulting effect of the evolutionary pace.

→ EvoEvo will then exploit the results to create new living technologies that will be based on this knowledge

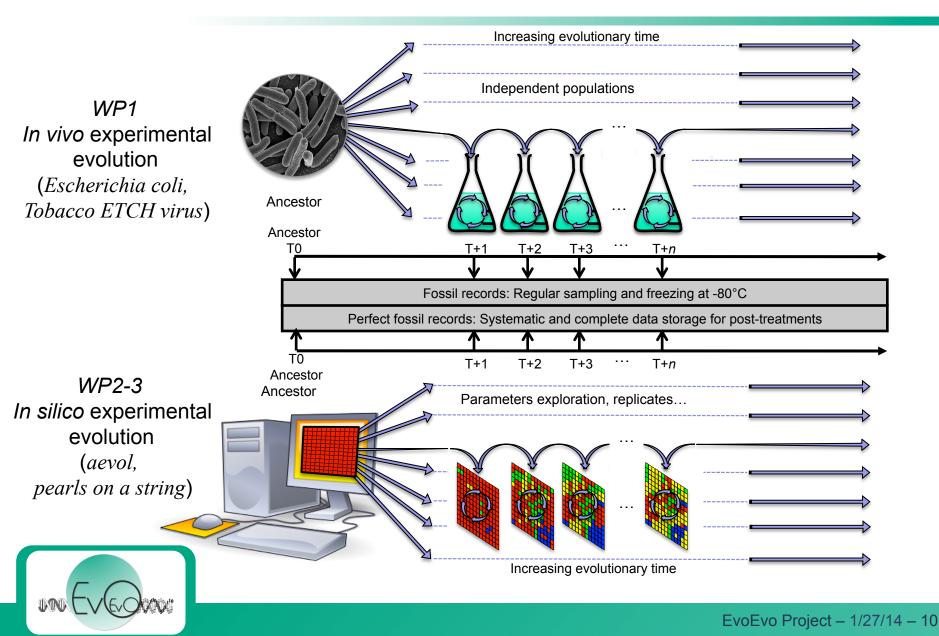
Scientific and Technological Objectives

- 1. Observe, quantify and characterize EvoEvo (microbiology)
 - Biological domain: Bacteria (*Escherichia coli*) and viruses (*Tobacco ETCH virus*)
- 2. Simulate EvoEvo (computational biology)
 - Unravel the structural roots of EvoEvo
- 3. Design a platform to exploit EvoEvo (computational evolution)
 - Transfer the knowledge to the ICT world
- 4. Apply EvoEvo to real ICT problems (application)
 - Proof of concept (e.g., evolution of a personal companion)

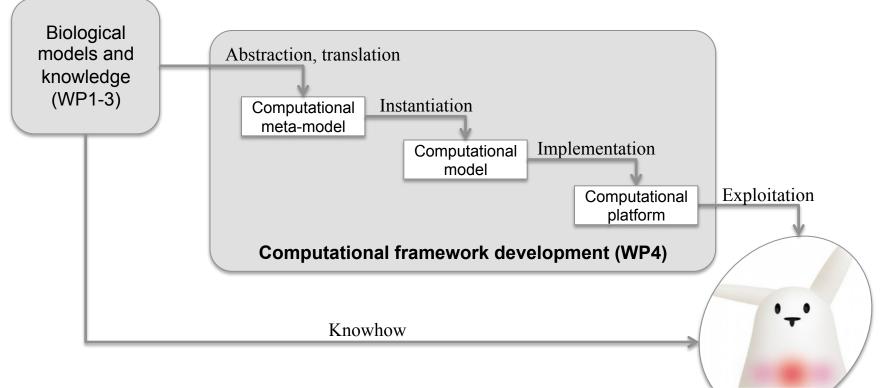


Approach: 4 properties, 3 systems of interest

		<i>In vivo</i> experimental evolution	Computational evolutionary models	Computational applications
e mapping	Variability Ability to generate new phenotypes	Indirect selection of mutation operators, including chromosomal rearrangements	Evolution of mutation operators, rates and phenotypic variability	Discover new solutions through efficient exploration of the functional space
Properties of the genotype-phenotype mapping	Robustness Ability to mutate without oosing fitness	Evolution of regulatory networks and DNA repair pathways	Indirect selection of robust genotype-phenotype mapping	The service is not perturbed by mutational events
of the genoty	Evolvability Ability to increase the proportion of avorable events	Dynamics of regulation networks (mutation and compensatory mutation)	Evolvability of genomic structures and regulation networks	Increase the system ability to adapt to new users or conditions
Properties	pen-endedness Ability to generate new hallenges while evolving	Exploration of new niches, diversification and polymorphism	Evolution of new species in an artificial ecosystem; resources cycling	Emergence of new functions/species in the digital ecosystem
		Two model organisms: <i>E. coli, Tobacco ETCH virus</i>	Two formalisms: "aevol", "pearls on a string"	On-line classification, Evolvable companion


EvoEvo Project - 1/27/14 - 8

Organization of the workplan



Experimental approach (WP1-3)

Development approach (WP4-5)

Application domain (WP5) (On-line data stream classification, evolvable personal companion)

EvoEvo Project - 1/27/14 - 11

(From Andrews *et al.*, 2011)

Expected impact

Impact in life science

An integrated framework for the understanding of the evolution of organism structure and function

- \rightarrow Clarify/disseminate the EvoEvo concept(s),
- → Propose new tools to study evolution (computational evolution)
- → Understand the origin of the amazing rapid evolution of microorganisms
- → Toward an integrated approach of evolution

Impact on ICT

A realistic route towards evolving software and living technologies

- → Create evolving technologies able to adapt dynamically to their environment,
- → Create evolving systems able to grow in complexity and evolving capacities (let living technologies emerge and evolve),
- → Create co-evolving technologies that find their own niche in human interactions.

Social impact

- → Impact on public health: a better understanding of the evolution of pathogens, of nosocomial and emergent diseases, of antibiotic resistance...
- → Impact on social usage of ICT: Co-evolving technologies will create new ways of programming and using information systems. Reduced constraints when using information systems

Partnership

- EvoEvo is an Information and Communication Technologies initiative funded by the European Commission under FP7.
 - FET-proactive FP7-ICT-2013-10 call: Evolving Living Technologies
- Partners:
 - G. Beslon, INRIA, Beagle, FR
 - S. Elena, CSIC, Valencia, SP
 - P. Hogeweg, Univ. Utrecht, NL
 - D. Schneider, UJF, LAPM, FR
 - S. Stepney, Univ. of York, UK
- Contact:

http://www.evoevo.eu

